化工学报 ›› 2022, Vol. 73 ›› Issue (1): 122-133.DOI: 10.11949/0438-1157.20210881
收稿日期:
2021-06-29
修回日期:
2021-09-08
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
付涛涛
作者简介:
庞子凡(1996—),男,硕士研究生,基金资助:
Zifan PANG(),Bin JIANG(),Chunying ZHU,Youguang MA,Taotao FU()
Received:
2021-06-29
Revised:
2021-09-08
Online:
2022-01-05
Published:
2022-01-18
Contact:
Taotao FU
摘要:
由于在流体流动、传质、传热及反应等方面良好的调控能力,微化工技术成为化工学科重要的发展领域。综述了近年来以CO2应用为背景的微化工系统中的多相流与传质的研究进展。从流体流动和传质机理出发,分别介绍了物理吸收和化学吸收过程的传质规律。总结了二氧化碳资源化利用的应用进展。展望了微化工技术在二氧化碳吸收与传质方面的发展前景。
中图分类号:
庞子凡, 蒋斌, 朱春英, 马友光, 付涛涛. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133.
Zifan PANG, Bin JIANG, Chunying ZHU, Youguang MA, Taotao FU. Progress of absorption, mass transfer and resource utilization of CO2 in microchannels[J]. CIESC Journal, 2022, 73(1): 122-133.
61 | Aghel B, Sahraie S, Heidaryan E. Comparison of aqueous and non-aqueous alkanolamines solutions for carbon dioxide desorption in a microreactor[J]. Energy, 2020, 201: 117618. |
62 | Aghel B, Sahraie S, Heidaryan E. Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor[J]. Separation and Purification Technology, 2020, 237: 116390. |
63 | Endrődi B, Bencsik G, Darvas F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
64 | Adamo A, Beingessner R L, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
65 | Nguyen D T, Esser-Kahn A P. A microvascular system for chemical reactions using surface waste heat[J]. Angewandte Chemie International Edition, 2013, 52(51): 13731-13734. |
66 | Lai W H, Wang Y X, Wang Y, et al. Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation[J]. Nature Chemistry, 2019, 11(8): 695-701. |
67 | Li S W, Xu J H, Wang Y J, et al. Liquid-liquid two-phase flow in pore array microstructured devices for scaling-up of nanoparticle preparation[J]. AIChE Journal, 2009, 55(12): 3041-3051. |
68 | Wu K J, de Varine Bohan G M, Torrente-Murciano L. Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors[J]. Reaction Chemistry & Engineering, 2017, 2(2): 116-128. |
69 | Duraiswamy S, Khan S A. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals[J]. Small, 2009, 5(24): 2828-2834. |
70 | Han C L, Hu Y P, Wang K, et al. Preparation and in situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system[J]. Powder Technology, 2019, 356: 414-422. |
71 | Lu Y C, Liu Y, Zhou C, et al. Preparation of Li2CO3 nanoparticles by carbonation reaction using a microfiltration membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(27): 11015-11020. |
72 | Wang Y, Zhang X L, Wang A J, et al. Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor[J]. Chemical Engineering Journal, 2014, 235: 191-197. |
73 | Chin S F, Iyer K S, Raston C L, et al. Size selective synthesis of superparamagnetic nanoparticles in thin fluids under continuous flow conditions[J]. Advanced Functional Materials, 2008, 18(6): 922-927. |
74 | Yang H W, Luan W L, Tu S T, et al. High-temperature synthesis of CdSe nanocrystals in a serpentine microchannel: wide size tunability achieved under a short residence time[J]. Crystal Growth & Design, 2009, 9(3): 1569-1574. |
1 | Das S, Pérez-Ramírez J, Gong J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chemical Society Reviews, 2020, 49(10): 2937-3004. |
2 | Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
75 | 童张法, 胡超, 李立硕, 等. 间歇鼓泡碳化法制备立方形纳米碳酸钙工艺条件优化[J]. 广西科学, 2015, 22(1): 53-59. |
Tong Z F, Hu C, Li L S, et al. Optimization of processing conditions for the preparation of cubic nano-sized calcium carbonate by intermittent bubbling carbonation[J]. Guangxi Sciences, 2015, 22(1): 53-59. | |
76 | 张士成, 韩跃新, 蒋军华, 等. 纳米碳酸钙的合成方法[J]. 矿产保护与利用, 1998(3): 11-15. |
Zhang S C, Han Y X, Jiang J H, et al. Synthesis of nano calcium carbonate[J]. Conservation and Utilization of Mineral Resources, 1998(3): 11-15. | |
3 | Yaashikaa P R, Senthil Kumar P, Varjani S J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization, 2019, 33: 131-147. |
4 | Chen C, Khosrowabadi Kotyk J F, Sheehan S W. Progress toward commercial application of electrochemical carbon dioxide reduction[J]. Chem, 2018, 4(11): 2571-2586. |
5 | Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie International Edition, 2014, 53(31): 7992-8002. |
6 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
7 | Haszeldine R S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652. |
8 | Liu N, Aymonier C, Lecoutre C, et al. Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy[J]. Chemical Physics Letters, 2012, 551: 139-143. |
9 | Al-Rawashdeh M, Yu F, Nijhuis T A, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor[J]. Chemical Engineering Journal, 2012, 207/208: 645-655. |
77 | 徐旺生, 何秉忠, 金士威, 等. 多级喷雾碳化法制备纳米碳酸钙工艺研究[J]. 无机材料学报, 2001, 16(5): 985-988. |
Xu W S, He B Z, Jin S W, et al. Preparation of nanometer calcium carbonate by multistage spray carbonation[J]. Journal of Inorganic Materials, 2001, 16(5): 985-988. | |
78 | Kang F, Wang D, Pu Y, et al. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor[J]. Powder Technology, 2018, 325: 405-411. |
79 | Boyjoo Y, Pareek V K, Liu J. Synthesis of micro and nano-sized calcium carbonate particles and their applications[J]. J. Mater. Chem. A, 2014, 2(35): 14270-14288. |
80 | Wang K, Wang Y J, Chen G G, et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 Nanoparticles[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6092-6098. |
81 | Liang Y, Chu G W, Wang J X, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. |
82 | Rong M Z, Zhang M Q, Ruan W H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review[J]. Materials Science and Technology, 2006, 22(7): 787-796. |
83 | Lin Y, Chen H B, Chan C M, et al. High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism[J]. Macromolecules, 2008, 41(23): 9204-9213. |
84 | Lam T D, Hoang T V, Quang D T, et al. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites[J]. Materials Science and Engineering: A, 2009, 501(1/2): 87-93. |
85 | Wang C Y, Sheng Y, Hari-Bala, et al. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ[J]. Materials Science and Engineering: C, 2007, 27(1): 42-45. |
86 | Du L, Wang Y J, Luo G S. In situ preparation of hydrophobic CaCO3 nanoparticles in a gas-liquid microdispersion process[J]. Particuology, 2013, 11(4): 421-427. |
87 | Benito-Lopez F, Tiggelaar R M, Salbut K, et al. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor[J]. Lab on a Chip, 2007, 7(10): 1345. |
88 | Han C L, Hu Y P, Wang K, et al. Synthesis of mesoporous silica microspheres by a spray-assisted carbonation microreaction method[J]. Particuology, 2020, 50: 173-180. |
89 | Park J I, Jagadeesan D, Williams R, et al. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities[J]. ACS Nano, 2010, 4(11): 6579-6586. |
10 | Gupta R, Fletcher D F, Haynes B S. Taylor flow in microchannels: a review of experimental and computational work[J]. The Journal of Computational Multiphase Flows, 2010, 2(1): 1-31. |
11 | Zhao Y C, Yao C Q, Chen G W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor[J]. Green Chem, 2013, 15(2): 446-452. |
12 | Inoue T, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 1153-1160. |
13 | Fadaei H, Scarff B, Sinton D. Rapid microfluidics-based measurement of CO2 diffusivity in bitumen[J]. Energy & Fuels, 2011, 25(10): 4829-4835. |
14 | Lefortier S G R, Hamersma P J, Bardow A, et al. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab on a Chip, 2012, 12(18): 3387. |
15 | Sell A, Fadaei H, Kim M, et al. Measurement of CO2 diffusivity for carbon sequestration: a microfluidic approach for reservoir-specific analysis[J]. Environmental Science & Technology, 2013, 47(1): 71-78. |
16 | Abolhasani M, Abolhasani M, Singh M, et al. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents[J]. Lab on a Chip, 2012, 12(9): 1611-1618. |
17 | Li W, Liu K, Simms R, et al. Microfluidic study of fast gas-liquid reactions[J]. Journal of the American Chemical Society, 2012, 134(6): 3127-3132. |
18 | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
19 | Kashid M N, Renken A, Kiwi-Minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science, 2011, 66(17): 3876-3897. |
20 | Tumarkin E, Nie Z H, Park J I, et al. Temperature-controlled ‘breathing’ of carbon dioxide bubbles[J]. Lab on a Chip, 2011, 11(20): 3545. |
21 | Bousquet P. Regional changes in carbon dioxide fluxes of land and oceans since 1980[J]. Science, 2000, 290(5495): 1342-1346. |
22 | Dong R, Chu D, Sun Q Q, et al. Numerical simulation of the mass transfer process of CO2 absorption by different solutions in a microchannel[J]. The Canadian Journal of Chemical Engineering, 2020, 98(12): 2648-2664. |
23 | Yang L X, Dietrich N, Loubière K, et al. Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[J]. Chemical Engineering Science, 2016, 143: 364-368. |
24 | Yang L X, Loubière K, Dietrich N, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203. |
25 | van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
26 | Svetlov S D, Abiev R S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 975-989. |
27 | Zhu C Y, Li C F, Gao X Q, et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer, 2014, 73: 492-499. |
28 | Yao C Q, Dong Z Y, Zhao Y C, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
29 | Zhang P, Yao C Q, Ma H Y, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels[J]. Chemical Engineering Science, 2018, 182: 17-27. |
30 | Chu C Y, Zhang F B, Zhu C Y, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
31 | Yang L, Tan J, Wang K, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109: 306-314. |
32 | Sun R, Cubaud T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows[J]. Lab on a Chip, 2011, 11(17): 2924-2928. |
33 | Sui J S, Yan J Y, Liu D, et al. Continuous synthesis of nanocrystals via flow chemistry technology[J]. Small, 2020, 16(15): 1902828. |
34 | Matsuoka A, Mae K. Design strategy of a microchannel device for liquid-liquid extraction based on the relationship between mass transfer rate and two-phase flow pattern[J]. Chemical Engineering and Processing - Process Intensification, 2021, 160: 108297. |
35 | Chen T Y, Desir P, Bracconi M, et al. Liquid–liquid microfluidic flows for ultrafast 5-hydroxymethyl furfural extraction[J]. Industrial & Engineering Chemistry Research, 2021, 60(9): 3723-3735. |
36 | Cubaud T, Sauzade M, Sun R P. CO2 dissolution in water using long serpentine microchannels[J]. Biomicrofluidics, 2012, 6(2): 022002. |
37 | Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708. |
38 | Cubaud T, Tatineni M, Zhong X L, et al. Bubble dispenser in microfluidic devices[J]. Physical Review E, 2005, 72(3): 037302. |
39 | Nirmal G M, Leary T F, Ramachandran A. Mass transfer dynamics in the dissolution of Taylor bubbles[J]. Soft Matter, 2019, 15(13): 2746-2756. |
40 | Ho T H M, Sameoto D, Tsai P A. Multiphase CO2 dispersions in microfluidics: formation, phases, and mass transfer[J]. Chemical Engineering Research and Design, 2021, 174: 116-126. |
41 | Marre S, Aymonier C, Subra P, et al. Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows[J]. Applied Physics Letters, 2009, 95(13): 134105. |
42 | Burk M J, Feng S G, Gross M F, et al. Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117(31): 8277-8278. |
43 | Sauzade M, Cubaud T. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils[J]. Physical Review E, 2013, 88(5): 051001. |
44 | Pang Z F, Zhu C Y, Ma Y G, et al. CO2 absorption by liquid films under Taylor flow in serpentine minichannels[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12250-12261. |
45 | Muradoglu M. Axial dispersion in segmented gas-liquid flow: effects of alternating channel curvature[J]. Physics of Fluids, 2010, 22(12): 122106. |
46 | Fries D M, von Rohr P R. Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J]. Chemical Engineering Science, 2009, 64(6): 1326-1335. |
47 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
48 | Olah G A, Goeppert A, Prakash G K S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons[J]. The Journal of Organic Chemistry, 2009, 74(2): 487-498. |
49 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
50 | Pang Z F, Jiang S K, Zhu C Y, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
51 | Durgadevi A, Pushpavanam S. An experimental and theoretical investigation of pure carbon dioxide absorption in aqueous sodium hydroxide in glass millichannels[J]. Journal of CO2 Utilization, 2018, 26: 133-142. |
52 | Zhou Y F, Yao C Q, Zhang P, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
53 | Tan J, Lu Y C, Xu J H, et al. Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 229-235. |
54 | Zhu C Y, Lu Y T, Fu T T, et al. Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel[J]. International Journal of Heat and Mass Transfer, 2017, 114: 83-89. |
55 | Sobieszuk P, Pohorecki R, Cygański P, et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science, 2011, 66(23): 6048-6056. |
56 | Yin Y R, Fu T T, Zhu C Y, et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel[J]. Separation and Purification Technology, 2019, 210: 541-552. |
57 | Aghel B, Heidaryan E, Sahraie S, et al. Optimization of monoethanolamine for CO2 absorption in a microchannel reactor[J]. Journal of CO2 Utilization, 2018, 28: 264-273. |
58 | Aghel B, Sahraie S, Heidaryan E, et al. Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor[J]. Process Safety and Environmental Protection, 2019, 131: 152-159. |
59 | Dietrich N, Loubière K, Jimenez M, et al. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel[J]. Chemical Engineering Science, 2013, 100: 172-182. |
60 | Kováts P, Pohl D, Thévenin D, et al. Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube[J]. Chemical Engineering Science, 2018, 190: 273-285. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[8] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[11] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[12] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[15] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||