化工学报 ›› 2021, Vol. 72 ›› Issue (1): 440-451.DOI: 10.11949/0438-1157.20200944
收稿日期:
2020-07-14
修回日期:
2020-09-01
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
任伟民
作者简介:
高宏娟(1996—),女,硕士研究生,基金资助:
Received:
2020-07-14
Revised:
2020-09-01
Online:
2021-01-05
Published:
2021-01-05
Contact:
REN Weimin
摘要:
脂肪族聚酯作为一种高性能、多用途的生物可降解材料,被认为是具有吸引力的石油基聚合物替代品之一。现有的脂肪族聚酯存在的结构单一、亲水性差以及脆性较强等缺点,限制了其在医药卫生等领域的应用。因此,高效地实现聚酯的改性具有重要的理论研究意义和实际应用价值。其中,将醚类官能团与酯链段相结合得到聚醚-聚酯共聚物是提高聚酯性能的一类行之有效的改性方法。本文综述了内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展。以共聚物的主链序列分类,分别介绍了嵌段、无规以及交替共聚物的合成方法以及相应聚合物的性质和性能。
中图分类号:
高宏娟,任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451.
GAO Hongjuan,REN Weimin. Review on synthesis of polyether-co-polyester from copolymerization of epoxides and lactones[J]. CIESC Journal, 2021, 72(1): 440-451.
图3中催化剂 | 单体 | 投料摩尔比 (内酯/环氧烷烃) | 时间/h | 温度/℃ | 转化率①/% | 分子量② | 分子量分布② | 文献 | |
---|---|---|---|---|---|---|---|---|---|
内酯 | 环氧化物 | ||||||||
1 | LA/EO | 0.5 | 22 | 60 | — | — | 26100 | 6.2 | [ |
2 | LA/EO | 0.5 | 22 | 60 | — | — | 17600 | 3.2 | [ |
3 | LA/CHO | 1.0 | — | — | 45 | 75 | 7600 | 1.29 | [ |
4 | LA/CHO | 1.0 | 3 | 24 | 98 | 69 | 37500 | 1.5 | [ |
5 | CL/EO | 1.8 | — | 50 | 50 | — | 10400 | 1.08 | [ |
6 | CL/LA/EO | — | — | — | — | 70 | 3500 | 1.12 | [ |
7/8 | LA/GPE | 0.5 | 0.75 | 25 | — | 98 | 4600 | 1.13 | [ |
表1 不同催化剂催化内酯和环氧烷烃嵌段共聚的结果
Table 1 Block copolymerization results of lactones with epoxides catalyzed by various complexes
图3中催化剂 | 单体 | 投料摩尔比 (内酯/环氧烷烃) | 时间/h | 温度/℃ | 转化率①/% | 分子量② | 分子量分布② | 文献 | |
---|---|---|---|---|---|---|---|---|---|
内酯 | 环氧化物 | ||||||||
1 | LA/EO | 0.5 | 22 | 60 | — | — | 26100 | 6.2 | [ |
2 | LA/EO | 0.5 | 22 | 60 | — | — | 17600 | 3.2 | [ |
3 | LA/CHO | 1.0 | — | — | 45 | 75 | 7600 | 1.29 | [ |
4 | LA/CHO | 1.0 | 3 | 24 | 98 | 69 | 37500 | 1.5 | [ |
5 | CL/EO | 1.8 | — | 50 | 50 | — | 10400 | 1.08 | [ |
6 | CL/LA/EO | — | — | — | — | 70 | 3500 | 1.12 | [ |
7/8 | LA/GPE | 0.5 | 0.75 | 25 | — | 98 | 4600 | 1.13 | [ |
图6、图8~图10、图12~图13中催化剂 | 单体 | 投料摩尔比 (内酯/环氧烷烃) | 时间/ h | 温度/ ℃ | 转化率①/% | 含量②/% | 分子量③ | 分子量 分布 ③ | Tg④/℃ | 文献 | |
---|---|---|---|---|---|---|---|---|---|---|---|
内酯 | 环氧烷烃 | ||||||||||
9 | LA/EO | 0.15 | 2 | 25 | — | 3.6 | — | 11100 | 1.14 | — | [ |
10 | LA/EO | 1.0 | 5 | 90 | — | — | — | 20000 | 1.5 | 11 | [ |
11 | CL/BGE | 2.33 | — | 80 | — | — | 28 | 18000 | 1.4 | –54 | [ |
12 | LA/BO | 1.0 | 24 | 45 | — | 0.25 | — | 29000 | 11.2 | 26 | [ |
12 | LA/PO | 2.0 | 24 | 45 | — | 0.34 | — | 80000 | 6.5 | 18 | [ |
12 | CL/PO | 2.0 | 24 | 45 | — | 0.51 | — | 45000 | 8.3 | — | [ |
12 | LA/ECH | 2.0 | 24 | 45 | — | 0.22 | — | 16840000 | 1.5 | –33 | [ |
13/14 | VL/PO | 1.0 | 6 | 23 | 25 | — | — | 11100 | 1.2 | — | [ |
15 | CL/PO | 1.0 | 4 | 50 | 33 | — | — | 14300 | 1.36 | — | [ |
表2 不同催化剂催化内酯和环氧烷烃无规共聚的结果
Table 2 Random copolymerization results of lactones with epoxides catalyzed by various complexes
图6、图8~图10、图12~图13中催化剂 | 单体 | 投料摩尔比 (内酯/环氧烷烃) | 时间/ h | 温度/ ℃ | 转化率①/% | 含量②/% | 分子量③ | 分子量 分布 ③ | Tg④/℃ | 文献 | |
---|---|---|---|---|---|---|---|---|---|---|---|
内酯 | 环氧烷烃 | ||||||||||
9 | LA/EO | 0.15 | 2 | 25 | — | 3.6 | — | 11100 | 1.14 | — | [ |
10 | LA/EO | 1.0 | 5 | 90 | — | — | — | 20000 | 1.5 | 11 | [ |
11 | CL/BGE | 2.33 | — | 80 | — | — | 28 | 18000 | 1.4 | –54 | [ |
12 | LA/BO | 1.0 | 24 | 45 | — | 0.25 | — | 29000 | 11.2 | 26 | [ |
12 | LA/PO | 2.0 | 24 | 45 | — | 0.34 | — | 80000 | 6.5 | 18 | [ |
12 | CL/PO | 2.0 | 24 | 45 | — | 0.51 | — | 45000 | 8.3 | — | [ |
12 | LA/ECH | 2.0 | 24 | 45 | — | 0.22 | — | 16840000 | 1.5 | –33 | [ |
13/14 | VL/PO | 1.0 | 6 | 23 | 25 | — | — | 11100 | 1.2 | — | [ |
15 | CL/PO | 1.0 | 4 | 50 | 33 | — | — | 14300 | 1.36 | — | [ |
图3、图9、图15~图18中催化剂 | 单体 | 投料摩尔比 内酯/环氧烷烃 | 时间/ h | 温度/ ℃ | 转化率①/ % | 分子量② | 分子量分布② | 文献 |
---|---|---|---|---|---|---|---|---|
16 | A③/GPE | 1.0 | 74 | 120 | 91 | 6600 | 1.6 | [ |
17 | DHNP/GPE | 1.0 | 3 | 120 | 93 | 2400 | 1.9 | [ |
18 | DHCM/PO | 0.5 | 6 | — | 88 | 15000 | 1.3 | [ |
18 | DHCM/CPO | 0.5 | 24 | — | 70 | 18000 | 1.5 | [ |
18 | DHCM/CHO | 0.5 | 6 | — | 58 | 7000 | 1.4 | [ |
11 | DHCM/EO | 0.2 | 72 | 50 | 25 | 2500 | 1.29 | [ |
6 | DHCM/EO | 0.8 | 22 | 60 | >99 | 2100 | 1.07 | [ |
19 | DHCM/EO | 0.5 | 72 | 60 | >99 | 7500 | 1.09 | [ |
表3 不同催化剂催化内酯和环氧烷烃嵌段共聚的结果
Table 3 Alternating copolymerization results of lactones with epoxides catalyzed by various complexes
图3、图9、图15~图18中催化剂 | 单体 | 投料摩尔比 内酯/环氧烷烃 | 时间/ h | 温度/ ℃ | 转化率①/ % | 分子量② | 分子量分布② | 文献 |
---|---|---|---|---|---|---|---|---|
16 | A③/GPE | 1.0 | 74 | 120 | 91 | 6600 | 1.6 | [ |
17 | DHNP/GPE | 1.0 | 3 | 120 | 93 | 2400 | 1.9 | [ |
18 | DHCM/PO | 0.5 | 6 | — | 88 | 15000 | 1.3 | [ |
18 | DHCM/CPO | 0.5 | 24 | — | 70 | 18000 | 1.5 | [ |
18 | DHCM/CHO | 0.5 | 6 | — | 58 | 7000 | 1.4 | [ |
11 | DHCM/EO | 0.2 | 72 | 50 | 25 | 2500 | 1.29 | [ |
6 | DHCM/EO | 0.8 | 22 | 60 | >99 | 2100 | 1.07 | [ |
19 | DHCM/EO | 0.5 | 72 | 60 | >99 | 7500 | 1.09 | [ |
1 | Williams C K. Synthesis of functionalized biodegradable polyesters[J]. Chem. Soc. Rev., 2007, 36(10): 1573-1580. |
2 | Xu Y H, Zhou F Y, Zhou D M, et al. Degradation behaviors of biodegradable aliphatic polyesters and polycarbonates[J]. J. Biobased Mater. Bio., 2020, 14(2): 155-168. |
3 | Iman M, Ali F, Fariba D, et al. Biomedical applications of biodegradable polyesters[J]. Polymers, 2016, 8(1): 20. |
4 | 丁良怡, 种刚刚, 潘江, 等. 生物转化脂肪酸合成ω-羟基酸和ω-氨基酸研究进展[J]. 化工学报, 2020, 71(9): 3919-3932. |
DING L Y, CHONG G G, PAN J, et al. Advances in biosynthesis of fatty acids to ω-hydroxyacids and ω-amino acids[J]. CIESC Journal, 2020, 71(9): 3919-3932. | |
5 | Gross R A, Kalra B. Biodegradable polymers for the environment[J]. Science, 2002, 297(5582): 803-807. |
6 | 丁颂东. 脂肪族聚酯的降解与稳定研究[D]. 成都, 四川大学, 2006. |
Ding S D. Degradation and stability of aliphatic polyesters[D]. Chengdu: Sichuan University, 2006. | |
7 | 王国利, 徐军, 郭宝华. 可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展[J]. 高分子通报, 2011, (4): 99-109. |
Wang G L, Xu J, Guo B H. Development in synthesis and modification of biodegradable poly(butylene succinate) and its copolymers[J]. Chin. Polym. Bull., 2011, (4): 99-109. | |
8 | 白桢慧, 苏婷婷, 王战勇. 可降解脂肪族聚酯的合成及酶解性能研究[J]. 化工新型材料, 2019, 47(3): 152-156. |
Bai Z H, Su T T, Wang Z Y. Study on the synthesis and enzymatic hydrolysis of biodegradable aliphatic polyester[J]. New Chem. Mater., 2019, 47(3): 152-156. | |
9 | Tokiwa Y, Calabia B P. Biodegradability and biodegradation of poly(lactide)[J]. Appl. Microbiol. Biotechnol., 2006, 72(2): 244-251. |
10 | 潘招银, 蔡培展. 聚乳酸: 让微生物降解塑料[J]. 广州化工, 2019, 47(5): 11-12. |
Pan Z Y, Cai P Z. Polylactic acid: allow microorganism degrade plastics[J]. Guangzhou Chem. Ind., 2019, 47(5): 11-12. | |
11 | Nampoothiri K M, Nair N R, John R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technol., 2010, 101(22): 8493-8501. |
12 | 王身国, 贝建中. 生物降解高分子——一类重要的生物材料(2): 生物相容性及脂肪族聚酯的表面改性[J]. 高分子通报, 2017, (11): 1-14. |
Wang S G, Bei J Z. Biodegradable polymer——a kind important biomaterial(2): Biocompatibility and surface modification of aliphatic polyester[J]. Chin. Polym. Bull., 2017, (11): 1-4. | |
13 | 杜娟敏, 赵雄燕, 孙璐, 等. 功能化可降解脂肪族聚酯的研究进展[J]. 塑料, 2014, (1): 43-47. |
Du J M, Zhao X Y, Sun L, et al. Research progress in functionalized biodegradable aliphatic polyesters[J]. Plast., 2014, (1): 43-47. | |
14 | 王景昌, 杨昌盛, 万泽韬, 等. 生物医用脂肪族聚酯开环聚合的研究进展[J]. 高分子通报, 2018, 236(12): 34-39. |
Wang J C, Yang C S, Wan Z T, et al. Research progress of ring-opening polymerization for biomedical aliphatic polyester[J]. Chin. Polym. Bull., 2018, 236(12): 34-39. | |
15 | Hoglund A, Hakkarainen M, Albertsson A C. Migration and hydrolysis of hydrophobic polylactide plasticizer[J]. Biomacromolecules. 2010, 11(1): 277-283. |
16 | 李凯. 聚对苯二甲酸乙二醇酯(PET)的阻隔性研究[D]. 天津: 天津科技大学, 2014. |
Li K. Study on barrier properties of PET[D]. Tianjin: Tianjin University of Science and Technology, 2014. | |
17 | Zhang X Y, Fevre M, Waymouth R M, et al. Catalysis as an enabling science for sustainable polymers[J]. Chem. Rev., 2018, 118(2): 839-885. |
18 | Zhang H B, Zheng W G, Yu Z Z, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer, 2010, 51(5): 1191-1196. |
19 | Herzberger J, Niederer K, Frey H, et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation[J]. Chem. Rev., 2016, 116(4): 2170-2243. |
20 | Klein R, Wurm F R. Aliphatic polyethers: classical polymers for the 21st century[J]. Macromol. Rapid Commun., 2015, 36(12): 1147-1165. |
21 | Brocas A L, Mantzaridis C, Carlotti S, et al. Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization[J]. Prog. Polym. Sci., 2013, 38(6): 845-873. |
22 | 安秋凤, 李歌, 杨刚. 聚醚型聚硅氧烷的研究进展及应用[J]. 化工进展, 2008, 27(9): 77-82. |
An Q F, Li G, Yang G. Research progress and application of polyether/polysiloxane[J]. Chem.Ind. Eng. Prog., 2008, 27(9): 77-82. | |
23 | 尹丹娜, 郑成, 张利萍, 等. 聚醚改性三硅氧烷表面活性剂的合成与表征[J]. 化工学报, 2010, 61(6): 1565-1570. |
Yi D N, Zheng C, Zhang L P, et al. Synthesis and characterization of polyether modified trisiloxanes[J]. CIESC Journal, 2010, 61(6): 1565-1570. | |
24 | 张敏, 夏青, 王昊, 等. 聚醚型与聚酯型聚氨酯弹性体的性能研究[J]. 塑料工业, 2013, 41(2): 87-89, 114. |
Zhang M, Xia Q, Wang H, et al. Study on properties of polyether and polyester polyurethane elastomer[J]. China Plast. Ind., 2013, 41(2): 87-89, 114. | |
25 | Morris L S, Childers M I, Coates G W. Bimetallic chromium catalysts with chain transfer agents: a route to isotactic poly(propylene oxide)s with narrow dispersities[J]. Angew. Chem. Int. Ed., 2018, 57(20): 5731-5734. |
26 | Childers M I, Zimmerman P M, Coates G W, et al. Isospecific, chain shuttling polymerization of propylene oxide using a bimetallic chromium catalyst: a new route to semicrystalline polyols[J]. J. Am. Chem. Soc., 2017, 139(32): 11048-11054. |
27 | Ahmed S M, Coates G W, Cavallo L, et al. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study[J]. J. Am. Chem. Soc., 2013, 135(50): 18901-18911. |
28 | Widger P C B, Ahmed S M, Coates G W, et al. Isospecific polymerization of racemic epoxides: a catalyst system for the synthesis of highly isotactic polyethers[J]. Chem. Commun., 2010, 46(17): 2935-2937. |
29 | Hirahata W, Thomas R M, Coates G W, et al. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides[J]. J. Am. Chem. Soc., 2008, 130(52): 17658-17659. |
30 | Thomas R M, Widger P C B, Coates G W, et al. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst[J]. J. Am. Chem. Soc., 2010, 132(46): 16520-16525. |
31 | Widger P C B, Ahmed S M, Coates G W. Exploration of cocatalyst effects on a bimetallic cobalt catalyst system: enhanced activity and enantioselectivity in epoxide polymerization[J]. Macromolecules, 2011, 44(14): 5666-5670. |
32 | Wang B T, Zhang Y, Guo Z H, et al. Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior[J]. J. Polym. Res., 2011, 18(2): 187-196. |
33 | 赵三平, 尹玥, 冯增国. PCL-PEG-PCL嵌段共聚物的合成与性能[J]. 功能高分子学报, 2002, 15(1): 67-71. |
Zhao S P, Yin Y, Feng Z Z. Synthesis and properties of PCL-PEG-PCL block copolymer[J]. Funct. Polym., 2002, 15(1): 67-71. | |
34 | 成澄, 杨瑞, 郑毅, 等. 两亲性多嵌段共聚物的合成及自组装[J]. 高分子材料科学与工程, 2019, 35(10): 43-48. |
Cheng C, Yang R, Zheng Y, et al. Synthesis and self-assembly of amphiphilic multi-block copolymers[J]. Polym. Master. Sci. Eng., 2019, 35(10): 43-48. | |
35 | 张文君, 王晴, 吴梦婷, 等. 聚合物PEG-PLGA在纳米给药系统中的应用研究进展[J]. 药学研究, 2019, 38(9): 532-538. |
Zhang W J, Wang Q, Wu M T, et al. Research progress on polymer PEG-PLGA in nano drug delivery system[J]. 2019, 38(9): 532-538. | |
36 | 张勇, 冯增国, 刘凤香, 等. 聚对苯二甲酸丁二醇酯-co-聚丁二酸丁二醇酯-b-聚乙二醇嵌段共聚物的合成及表征[J]. 化学学报, 2002, 60(12): 2225-2231. |
Zhang Y, Feng Z G, Liu F X, et al. Synthesis and Characterization of poly(butylene terephthalate)-co-poly(butylene succinate)-b-poly(ethylene glycol) segmented block copolymers[J]. Acta Chimica Sinica, 2002, 60(12): 2225-2231. | |
37 | Tan C, Chen C. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers[J]. Angew. Chemie., 2019, 131(22): 7268-7276. |
38 | Paul S, Zhu Y Q, Williams C K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates[J]. Chem. Commun., 2015, 51(30): 6459-6479. |
39 | Inoue S. Copolymerization of carbon dioxide and epoxide: functionality of the copolymer[J]. Journal of Macromol. Sci., Part A: Chem., 2006, 13(5): 651-664. |
40 | Ryu H K, Lee E, Son K, et al. Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand[J]. Polym. Chem., 2020, 11(22): 3756-3761. |
41 | Cohn D, Younes H. Biodegradable PEO/PLA block copolymers[J]. J. Biomed. Mater. Res., 1988, 22(11): 993-1009. |
42 | Stevels W M, Ankone M J K, Dijkstra P J, et al. Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B)[J]. Macromol. Chem. Phys., 1995, 196(11): 3687-3694. |
43 | Kimura Y, Matsuzaki Y, Yamane H, et al. Preparation of block copoly(ester-ether) comprising poly(L-lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo[J]. Polymer, 1989, 30(7): 1342-1349. |
44 | Chen X H, Mccarthy S P, Gross R A. Synthesis and characterization of L-lactide-ethylene oxide multiblock copolymers[J]. Macromolecules, 1997, 30(15): 4295-4301. |
45 | Quan S M, Wang X K, Diaconescu P L, et al. Redox switchable copolymerization of cyclic esters and epoxides by a zirconium complex[J]. Macromolecules, 2016, 49(18): 6768-6778. |
46 | Biernesser A B, Delle Chiaie K R, Byers J A, et al. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst[J]. Angew. Chem. Int. Ed., 2016, 55(17): 5251-5254. |
47 | Qi M, Dong Q, Byers J A, et al. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide[J]. J. Am. Chem. Soc., 2018, 140(17): 5686-5690. |
48 | Raynaud J, Gnanou Y, Taton D, et al. N-heterocyclic carbine-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of α,ω-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers[J]. J. Am. Chem. Soc., 2009, 131(9): 3201-3209. |
49 | Zhao J, Pahovnik D, Hadjichristidis N, et al. Sequential polymerization of ethylene oxide, ε-caprolactone and L-lactide: a one-pot metal-free route to tri- and pentablock terpolymers[J]. Polym. Chem., 2014, 5(12): 3750-3753. |
50 | Liu Y Y, Li Z J, Guo K, et al. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether-polyester diblock copolymers[J]. Polym. Chem., 2018, 9(2): 154-159. |
51 | Liu S, Zhao J P, Ling J, et al. Biased lewis pairs: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences[J]. Angew. Chem. Int. Ed., 2019, 58(43): 15478-15487. |
52 | Zhu K J, Lin X Z, Yang S L. Preparation and properties of D,L-lactide and ethylene oxide copolymer: A modifying biodegradable polymeric material[J]. J. Polym. Sci., Part C: Polym. Lett., 1986, 24(7): 331-337. |
53 | Xu J B, Yang J X, Pispas S, et al. Synthesis and properties of amphiphilic and biodegradable poly(ε-caprolactone-co-glycidol) copolymers[J]. J. Polym. Sci., Part A: Polym. Chem., 2015, 53(7): 846-853. |
54 | Chwatko M, Lynd N A. Statistical copolymerization of epoxides and lactones to high molecular weight[J]. Macromolecules, 2017, 50(7): 2714-2723. |
55 | Varghese J K, Gnanou Y, Feng X S, et al. Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with L-lactide[J]. Polym. Chem., 2019, 10(27): 3764-3771. |
56 | Clayman N E, Waymouth R M, Coates G W, et al. Dual catalysis for the copolymerisation of epoxides and lactones[J]. Chem. Commun., 2019, 55(48): 6914-6917. |
57 | Ren W M, Wang R J, Ren B H, et al. Mechanism-inspired design of heterodinuclear catalysts for copolymerization of epoxide and lactone[J]. Chinese J. Polym. Sci., 2020. |
58 | Tadokoro A, Takata T, Endo T. Anionic ring-opening alternating copolymerization of a bicyclic bis(γ-lactone) with an epoxide: a novel ring-opening polymerization of a monomer containing a γ-lactone structure[J]. Macromolecules, 1993, 26(17): 4400-4406. |
59 | Takata T, Tadokoro A, Endo T, et al. Anionic ring-opening alternating copolymerizations of bicyclic and spirocyclic bis(γ-lactone)s with epoxides via a tandem double ring-opening isomerization of the bislactones [J]. Macromolecules, 1995, 28(5): 1340-1345. |
60 | Uenishi K, Sudo A, Endo T. Anionic alternating copolymerizability of epoxide and 3,4-dihydrocoumarin by imidazole[J]. Macromolecules, 2007, 40(18): 6535-6539. |
61 | Sudo A, Uenishi K, Endo T. Anionic copolymerization of epoxide with bifunctional aromatic lactone derived from 2-methylresorcinol[J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46(10): 3447-3451. |
62 | Uenishi K, Sudo A, Endo T. Anionic alternating copolymerization of 3,4-dihydrocoumarin and glycidyl ethers: a new approach to polyester synthesis[J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46(12): 4092-4102. |
63 | Sudo A, Uenishi K, Endo T. Anionic alternating copolymerization of epoxide and 3,4-dihydrocoumarin and its application to networked polymers[J]. Polym. Int., 2009, 58(9): 970-975. |
64 | Endo T, Sudo A. Development and application of novel ring-opening polymerizations to functional networked polymers[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(19): 4847-4858. |
65 | Uenishi K, Sudo A, Endo T. Anionic alternating copolymerization of a bifunctional six-membered lactone and glycidyl phenyl ether: Selective synthesis of a linear polyester having lactone moiety[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(6): 1661-1672. |
66 | Ohsawa S, Sudo A, Endo T, et al. Alternating copolymerization of bicyclic bis(γ-butyrolactone) and epoxide through zwitterion process by phosphines[J]. Macromolecules, 2010, 43(8): 3585-3588. |
67 | Sudo A, Zhang Y, Endo T. Anionic alternating copolymerization of epoxide and six-membered lactone bearing naphthyl moiety[J]. J. Polym. Sci., Part A: Polym. Chem., 2011, 49(3): 619-624. |
68 | Van Zee N J, Coates G W. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters[J]. Chem. Commun., 2014, 50(48): 6322-6325. |
69 | Hu S Y, Dai G X, Zhao J P, et al. Ring-opening alternating copolymerization of epoxides and dihydrocoumarin catalyzed by a phosphazene superbase[J]. Macromolecules, 2016, 49(12): 4462-4472. |
70 | Zhang H X, Hu S Y, Zhao J, et al. Phosphazene-catalyzed alternating copolymerization of dihydrocoumarin and ethylene oxide: weaker is better[J]. Macromolecules, 2017, 50(11): 4198-4205. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||