化工学报 ›› 2023, Vol. 74 ›› Issue (2): 883-892.DOI: 10.11949/0438-1157.20221112
收稿日期:
2022-08-08
修回日期:
2022-10-29
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
李伯耿
作者简介:
赵亚静(1994—),女,硕士研究生,yajingzhao@zju.edu.cn
基金资助:
Yajing ZHAO(), Jijiang HU, Suyun JIE, Bo-Geng LI()
Received:
2022-08-08
Revised:
2022-10-29
Online:
2023-02-05
Published:
2023-03-21
Contact:
Bo-Geng LI
摘要:
以高顺式端羟基液体顺丁橡胶(HTPB)为改性剂,分别采用共混-共固化法、共缩聚法制备了共混改性型不饱和聚酯[UPR+HTPB (blend)]、无规共缩聚改性型不饱和聚酯(UPR-HTPB)和嵌段共缩聚改性型不饱和聚酯(UPR-MAH-HTPB),系统地考察了三种改性不饱和聚酯固化样品的机械物理性能。结果表明,三种改性不饱和树脂的断裂伸长率、拉伸强度和冲击强度均优于未改性的不饱和树脂,固化收缩率大幅降低,且共缩聚改性树脂(UPR-HTPB和UPR-MAH-HTPB)的增韧效果和降收缩效果明显优于共混改性树脂。此外,UPR-MAH-HTPB的拉伸模量也优于未改性的不饱和树脂,硬度和热变形温度则基本保持不变。冲击断面的形貌、交联密度和DMA分析表明,UPR+HTPB (blend)固化体系中存在着HTPB聚团的现象,而共缩聚改性树脂,尤其是嵌段型的UPR-MAH-HTPB,因HTPB嵌入到UPR的主链中,使HTPB微相分离,并更多地参与交联,在增韧的同时保持了树脂良好的刚性和强度。
中图分类号:
赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892.
Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber[J]. CIESC Journal, 2023, 74(2): 883-892.
Sample | Crosslinking density/(103m/m3) | Rockwell hardness/HR | Shrinkage/% | |
---|---|---|---|---|
DMA | Swelling | |||
Neat UPR | 12.9 | 14.4 | 124.8±0.7 | 10.2 |
UPR+HTPB(blend) | 10.1 | 12.7 | 119.8±0.5 | 4.3 |
UPR-HTPB | 13.2 | 15.5 | 122.2±1.0 | 2.1 |
UPR-MAH-HTPB | 14.5 | 16.6 | 124.5±3.8 | 3.3 |
表1 改性前后UPR固化物的交联密度、硬度与固化收缩率
Table 1 Density, Rockwell hardness and crosslinking shrinkage of neat and modified UPRs
Sample | Crosslinking density/(103m/m3) | Rockwell hardness/HR | Shrinkage/% | |
---|---|---|---|---|
DMA | Swelling | |||
Neat UPR | 12.9 | 14.4 | 124.8±0.7 | 10.2 |
UPR+HTPB(blend) | 10.1 | 12.7 | 119.8±0.5 | 4.3 |
UPR-HTPB | 13.2 | 15.5 | 122.2±1.0 | 2.1 |
UPR-MAH-HTPB | 14.5 | 16.6 | 124.5±3.8 | 3.3 |
HTPB content/% | Elongation at break/% | Tensile strength/MPa | Tensile modulus/MPa | Impact strength/(kJ/m2) | Rockwell hardness/HR | HDT/℃ | Shrinkage/% |
---|---|---|---|---|---|---|---|
0 | 1.7±0.4 | 36.3±6.7 | 2833±61 | 1.71±0.06 | 124.8±0.7 | 76.8 | 10.2 |
1 | 2.0±0.1 | 47.6±1.5 | 3395±7 | 2.23±0.06 | 125.7±0.4 | 78.8 | 8.4 |
2 | 2.3±0.1 | 54.2±0.5 | 3470±79 | 2.60±0.05 | 126.0±0.6 | 80.4 | 6.2 |
3 | 2.8±0.1 | 62.5±4.7 | 3555±318 | 3.03±0.15 | 125.7±0.8 | 81.0 | 5.1 |
4 | 3.4 | 66.4±0.4 | 3300±30 | 3.43±0.07 | 124.5±0.4 | 78.6 | 4.5 |
5 | 3.7 | 58.0±1.2 | 3020±99 | 3.93±0.08 | 124.5±3.8 | 74.9 | 3.3 |
表2 不同HTPB加入量时嵌段共缩聚改性的UPR的室温综合性能
Table 2 Comprehensive performance of UPR modified by block copolycondensation at different HTPB content
HTPB content/% | Elongation at break/% | Tensile strength/MPa | Tensile modulus/MPa | Impact strength/(kJ/m2) | Rockwell hardness/HR | HDT/℃ | Shrinkage/% |
---|---|---|---|---|---|---|---|
0 | 1.7±0.4 | 36.3±6.7 | 2833±61 | 1.71±0.06 | 124.8±0.7 | 76.8 | 10.2 |
1 | 2.0±0.1 | 47.6±1.5 | 3395±7 | 2.23±0.06 | 125.7±0.4 | 78.8 | 8.4 |
2 | 2.3±0.1 | 54.2±0.5 | 3470±79 | 2.60±0.05 | 126.0±0.6 | 80.4 | 6.2 |
3 | 2.8±0.1 | 62.5±4.7 | 3555±318 | 3.03±0.15 | 125.7±0.8 | 81.0 | 5.1 |
4 | 3.4 | 66.4±0.4 | 3300±30 | 3.43±0.07 | 124.5±0.4 | 78.6 | 4.5 |
5 | 3.7 | 58.0±1.2 | 3020±99 | 3.93±0.08 | 124.5±3.8 | 74.9 | 3.3 |
1 | 周菊兴, 董永祺. 不饱和聚酯树脂——生产及应用[M]. 北京: 化学工业出版社, 2000. |
Zhou J X, Dong Y Q. Production and Application of Unsaturated Polyester Resin[M]. Beijing: Chemical Industry Press, 2000. | |
2 | 沈开猷. 不饱和聚酯树脂及其应用[M]. 北京: 化学工业出版社, 1988. |
Shen K Q. Unsaturated Polyester Resin and Its Application[M]. Beijing: Chemical Industry Press, 1998. | |
3 | 李玲. 不饱和聚酯树脂及其应用[M]. 北京: 化学工业出版社, 2012. |
Li L. Unsaturated Polyester Resin and Its Application[M]. Beijing: Chemical Industry Press, 2012. | |
4 | 郭军红, 魏小赟, 崔锦峰, 等. 不饱和聚酯树脂改性研究新进展[J]. 中国塑料, 2013, 27(5): 19-23. |
Guo J H, Wei X Y, Cui J F, et al. New research progress in modification of unsaturated polyester resin[J]. China Plastics, 2013, 27(5): 19-23. | |
5 | Pascault J P, Sautereau H, Verdu J, et al. Thermosetting Polymer[M]. New York: Marcel Dekker, Inc., 2002. |
6 | Wu Z, Cui H, Chen L, et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent[J]. Composites Science and Technology, 2018, 164: 195-203. |
7 | Mittal G, Rhee K Y, Mišković-Stanković V, et al. Reinforcements in multi-scale polymer composites: processing, properties, and applications[J]. Composites Part B: Engineering, 2018, 138: 122-139. |
8 | 鲁博, 张林文, 潘则林, 等. 聚氨酯改性不饱和聚酯的微观结构与性能[J]. 化工学报, 2006(12): 3005-3009. |
Lu B, Zhang L W, Pan Z L. Microstructure and properties of unsaturated polyester modified with polyurethane[J]. Journal of Chemical Industry and Engineering(China), 2006(12): 3005-3009. | |
9 | 程丝, 王新波, 严明. 不饱和聚酯增韧技术进展及机理探讨[J]. 合成技术及应用, 2004(1): 20-22. |
Cheng S, Wang X B, Yan M. Discussion on toughening mechanism of unsaturated polyester resins[J]. Synthetic Technology and Application, 2004(1): 20-22. | |
10 | Ahmad I, Hassan F M. Preparation of unsaturated polyester liquid natural rubber reinforced by montmorillonite[J]. Journal of reinforced plastics and composites, 2010, 29(18): 2834-2841. |
11 | 曾庆乐, 庞永新, 贾德民. 活性端基液体橡胶增韧不饱和聚酯的研究[J]. 高分子材料科学与工程, 1998(5): 68-72. |
Zeng Q L, Pang Y X, Jia D M. Study on toughening of UP with liquid rubbers[J]. Polymer Materials Science and Engineering, 1998, 14(5): 67-71. | |
12 | 葛曷一, 王继辉, 柳华实, 等. 活性端基聚氨酯橡胶改性不饱和聚酯树脂的研究(Ⅰ)[J]. 玻璃钢/复合材料, 2004(1): 21-23, 27. |
Ge H Y, Wand J H, Liu H S, et al. Study on activated terminated polyurethane rubber modifying unsaturated polyester resin (Ⅰ)[J]. Fiber Reinforced Plastics / Composites, 2004(1): 21-23, 27. | |
13 | 肖惠宁, 李宁生, 孙载坚. 不饱和聚氨酯液体橡胶增韧不饱和聚酯树脂(Ⅱ): 增韧树脂的断裂行为及亚微观两相结构[J]. 高分子材料科学与工程, 1990(1): 55-60. |
Xiao H N, Li N S, Sun Z J. Toughened unsaturated polyester resin with unsaturated polyurethane liquid rubber(Ⅱ): The fracture behavior and submicroscopic two-phase structure of toughened resin[J]. Polymeric Materials Science & Engineering, 1990(1): 55-60. | |
14 | Ahmad S H, Rasid R, Bonnia N N, et al. Polyester-kenaf composites: effects of alkali fiber treatment and toughening of matrix using liquid natural rubber[J]. Journal of Composite Materials, 2011, 45(2): 203-217. |
15 | Kargarzadeh H, Ahmad I, Abdullah I, et al. Functionalized liquid natural rubber and liquid epoxidized natural rubber: a promising green toughening agent for polyester[J]. Journal of Applied Polymer Science, 2015, 132(3): 41292. |
16 | Hisham S F, Ahmad I, Daik R, et al. Blends of LNR with unsaturated polyester resin from recycled PET: comparison of mechanical properties and morphological analysis with the optimum blend by commercial resin[J]. Sains Malaysiana, 2011, 40(7): 729-735. |
17 | 肖惠宁, 孙载坚. 液体橡胶增韧不饱和聚酯树脂[J]. 中国塑料, 1987(1): 9-16. |
Xiao H N, Sun Z J. Toughened unsaturated polyester resin with liquid rubber[J]. China Plastics, 1987(1): 9-16. | |
18 | Rajaee P, Ghasemi F A, Fasihi M, et al. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin[J]. Composites Part B-Engineering, 2019, 173: e106803. |
19 | Kargarzadeh H, Sheltami R M, Ahmad I, et al. Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties[J]. Polymer, 2015, 71: 51-59. |
20 | Cherian A B, Thachil E T. Block copolymers of unsaturated polyesters and functional elastomers[J]. Journal of Applied Polymer Science, 2004, 94(5): 1956-1964. |
21 | Cherian A B, Thachil E T. Blends of unsaturated polyester resin with functional elastomers[J]. Journal of Elastomers & Plastics, 2003, 35(4): 367-380. |
22 | Cherian A B, Thachil E T. Modification of isophthalic unsaturated polyester resin using elastomers bearing reactive functional groups[J]. Progress in Rubber, Plastics and Recycling Technology, 2004, 20(4): 247-266. |
23 | Tong S N, Wu P T K. Supertough unsaturated polyester and its SMC[J]. Journal of Reinforced Plastics and Composites, 1990, 9(3): 299-311. |
24 | 周文英, 牛国良, 寇静利, 等. 液体丁腈胶增韧不饱和聚酯研究[J]. 热固性树脂, 2004(1): 1-4. |
Zhou W Y, Niu G L, Kou J L. Study on unsaturated polyester resin toughened with XNBR[J]. Thermosetting Resin, 2004(1): 1-4. | |
25 | 周勤灼, 曹哲, 介素云, 等. 胶液法制备高顺式端羟基聚丁二烯液体橡胶[J]. 高分子学报, 2016(3): 293-299. |
Zhou Q Z, Cao Z, Jie S Y, et al. Synthesis of HTPB with high cis-1, 4 content from PBD original solution[J]. Acta Polymerica Sinica, 2016(3): 293-299. | |
26 | 介素云, 周勤灼, 李伯耿. 高顺式- 1, 4含量端羟基聚丁二烯液体橡胶及其制备方法: 201410377717.8 [P]. 2016-03-09. |
Jie S Y, Zhou Q Z, Li B G, et al. High cis-1, 4 content hydroxyl terminated polybutadiene liquid rubber and its preparation method: 201410377717.8 [P]. 2016-03-09. | |
27 | Xu L, Li B G, Jie S Y, et al. 110th anniversary: the epoxidation of polybutadiene via reaction-controlled phase-transfer catalysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13085-13092. |
28 | 李伯耿, 徐力, 介素云, 等. 一种用共轭二烯烃溶液聚合原液直接制备环氧化共轭二烯烃聚合物的方法: 201811505274.0[P]. 2020-07-14. |
Li B G, Xu L, Jie S Y, et al. A method for directly preparing epoxidized conjugated diene polymers with conjugated diene solution polymerization stock solution: 201811505274.0[P]. 2020-07-14. | |
29 | 赵亚静, 李伯耿, 介素云, 等. 高顺式HTPB对不饱和树脂的改性[J]. 高校化学工程学报, 2021, 35(4): 720-728. |
Zhao Y J, Li B G, Jie S Y, et al. Modification of unsaturated polyester resin by high cis-1, 4 hydroxyl-terminated polybutadiene[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(4): 720-728. | |
30 | Worzakowska M. Development of biobased unsaturated polyester resin containing highly functionalized castor oil[J]. Journal of Materials Science, 2009, 44: 4069-4077. |
31 | Qazvini N T, Mohammadi N. Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: effect of styrene content[J]. Polymer, 2005, 46(21): 9088-9096. |
32 | Nehete K, Sharma R A, Chaudhari L, et al. Study of erosion resistance and mechanical properties of unsaturated polyester based nano-composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(2): 373-382. |
33 | Todorova Z, Dishovsky N, Dimitrov R, et al. Natural rubber filled SiC and B4C ceramic composites as a new NTC thermistors and piezoresistive sensor materials[J]. Polymer Composites, 2008, 29(1): 109-118. |
34 | 赵亚静. 高顺式端羟基聚丁二烯改性不饱和聚酯研究[D]. 杭州: 浙江大学, 2020. |
Zhao Y J. Modification of unsaturated polyester by high cis-1,4 hydroxyl-terminated polybutadiene[D]. Hangzhou: Zhejiang University, 2020. |
[1] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[2] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[5] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[6] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[7] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[8] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[9] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[10] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[11] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[12] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[13] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[14] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[15] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||