化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1847-1862.DOI: 10.11949/0438-1157.20211824
白文轩(),陈锦湘,刘芬,张静淙,谷志平,熊成铭,施王军,余江()
收稿日期:
2021-12-27
修回日期:
2022-03-24
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
余江
作者简介:
白文轩(1998—),男,博士研究生,基金资助:
Wenxuan BAI(),Jinxiang CHEN,Fen LIU,Jingcong ZHANG,Zhiping GU,Chengming XIONG,Wangjun SHI,Jiang YU()
Received:
2021-12-27
Revised:
2022-03-24
Online:
2022-05-05
Published:
2022-05-24
Contact:
Jiang YU
摘要:
水相湿法氧化脱硫工艺在含硫化氢的工业过程气净化中得到广泛应用,但普遍存在脱硫剂易降解、硫磺品质差和副盐产量高等二次污染严重的难题。将无机铁盐溶于有机溶剂构建的非水相湿法氧化工艺不仅能实现氧化脱硫,而且具有消除CO2酸性气干扰和避免活性氧过度氧化作用而产生大量副盐的优势。但由于铁盐在有机溶剂中的溶解度小而制约了铁盐非水相湿法氧化脱硫工艺的发展。近年来,基于金属基离子液体良好的氧化性、氧化还原可逆性和稳定性,及在有机溶剂中的超溶解性而构建的非水相离子液体湿法氧化脱硫工艺(Nasil)取得了快速发展。通过剖析水相湿法氧化脱硫工艺的问题成因,结合当前能源环境的发展趋势,阐述了湿法氧化脱硫的必要性和发展机遇。从金属基离子液体脱硫剂结构设计和组成优化出发,介绍非水相离子液体湿法氧化脱硫反应和过程强化原理,归纳总结新工艺十多年来的理论发展和应用探索历程。最后,针对现阶段湿法氧化脱硫技术所面临的挑战,强调开拓新型脱硫思路的重要性,为脱硫净化过程中碳氢资源的整合发展提出展望。
中图分类号:
白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
Wenxuan BAI, Jinxiang CHEN, Fen LIU, Jingcong ZHANG, Zhiping GU, Chengming XIONG, Wangjun SHI, Jiang YU. Metal-based ionic liquid wet oxidative desulfurization process: development and prospect[J]. CIESC Journal, 2022, 73(5): 1847-1862.
1 | 李鹏, 赵德银, 张健, 等. 油田伴生气净化工艺优化研究及工业应用[J]. 石油与天然气化工, 2021, 50(2): 17-22. |
Li P, Zhao D Y, Zhang J, et al. Optimization study and industrial application of oilfield associated gas purification process[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 17-22. | |
2 | 卢洪源. 湿式氧化法脱硫工艺在辽河油田伴生气处理中的应用[J]. 石油规划设计, 2019, 30(4): 26-28. |
Lu H Y. Application of wet oxidation desulfurization technology in associated gas treatment in Liaohe oilfield[J]. Petroleum Planning & Engineering, 2019, 30(4): 26-28. | |
3 | 张小勇. 天然气净化厂酸性水汽提系统运行优化技术研究[J]. 四川化工, 2021, 24(3): 53-58. |
Zhang X Y. Study on optimization technology of acid water stripping system operation[J]. Sichuan Chemical Industry, 2021, 24(3): 53-58. | |
4 | 刘锦芳. 克劳斯硫磺尾气工艺治理选择及应用[J]. 炼油与化工, 2020, 31(6): 65-67. |
Liu J F. Selection and application of Kraus sulfur tail gas treatment process[J]. Refining and Chemical Industry, 2020, 31(6): 65-67. | |
5 | 江皓, 吴全贵, 周红军. 沼气净化提纯制生物甲烷技术与应用[J]. 中国沼气, 2012, 30(2): 6-11, 19. |
Jiang H, Wu Q G, Zhou H J. Biogas purification technology producing bio-methane and its applications[J]. China Biogas, 2012, 30(2): 6-11, 19. | |
6 | 于艳秋, 毛红艳, 裴爱霞. 普光高含硫气田特大型天然气净化厂关键技术解析[J]. 天然气工业, 2011, 31(3): 22-25, 107. |
Yu Y Q, Mao H Y, Pei A X. An analysis of key technologies applied in a super-large natural gas conditioning plant in the Puguang Gas Field[J]. Natural Gas Industry, 2011, 31(3): 22-25, 107. | |
7 | 张宏, 李望, 赵和平, 等. 以废气中的硫化氢开发含硫化学品的研究进展[J]. 化工进展, 2017, 36(10): 3832-3849. |
Zhang H, Li W, Zhao H P, et al. Latest development of the sulfur-containing chemicals from hydrogen sulfide in waste gas[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3832-3849. | |
8 | Balne P K, Sinha N R, Hofmann A C, et al. Characterization of hydrogen sulfide toxicity to human corneal stromal fibroblasts[J]. Annals of the New York Academy of Sciences, 2020, 1480(1): 207-218. |
9 | Goto N, Hara H, Kondo M, et al. Hydrogen sulfide increases copper-dependent neurotoxicity via intracellular copper accumulation[J]. Metallomics, 2020, 12(6): 868-875. |
10 | Wolf M, Schüler C, Hinrichsen O. Sulfur poisoning of co-precipitated Ni-Al catalysts for the methanation of CO2 [J]. Journal of CO2 Utilization, 2019, 32: 80-91. |
11 | Yue Y X, Wang B L, Sheng G F, et al. An ultra-high H2S-resistant gold-based imidazolium ionic liquid catalyst for acetylene hydrochlorination[J]. New Journal of Chemistry, 2019, 43(32): 12767-12775. |
12 | 丁青松. 金属基离子液体脱硫化氢工艺国际先进[N/OL].中国化工报, 2021-6-15. . |
Ding Q S. Metal based ionic liquid hydrogen sulfide removal process is internationally advanced[N/OL]. China Chemical Industry News, 2021-6-15. . | |
13 | 罗化峰, 凌开成, 张卫帅. 改良ADA脱硫工艺中含硫物质与ADA反应的研究[J]. 天然气化工(C1化学与化工), 2014, 39(1): 16-21, 31. |
Luo H F, Ling K C, Zhang W S. Study on reaction of sulfur-containing substances with ADA in modified stretford desulfurization process[J]. Natural Gas Chemical Industry, 2014, 39(1): 16-21, 31. | |
14 | 周文. PDS技术在天然气脱硫中的应用[J]. 石油与天然气化工, 2001, 30(5): 250-252. |
Zhou W. Application of PDS technology in natural gas desulfurization[J]. Chemical Engineering of Oil and Gas, 2001, 30(5): 250-252. | |
15 | Piché S, Larachi F. Hydrosulfide oxidation pathways in oxic solutions containing iron(Ⅲ) chelates[J]. Environmental Science & Technology, 2007, 41(4): 1206-1211. |
16 | Karimi A, Tavassoli A, Nassernejad B. Kinetic studies and reactor modeling of single step H2S removal using chelated iron solution[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 748-756. |
17 | 周胜红. 普光气田集输管道腐蚀及保护探讨[J]. 石化技术, 2021, 28(2): 158-159. |
Zhou S H. Discussion on corrosion and protection of gathering and transmission pipeline in Puguang Gas Field[J]. Petrochemical Industry Technology, 2021, 28(2): 158-159. | |
18 | 肖九高, 杨建平, 郝爱香. 国外络合铁法脱硫技术研究进展[J]. 化学工业与工程技术, 2003, 24(5): 41-44, 56. |
Xiao J G, Yang J P, Hao A X. Abroad research progress of H2S removing process with chelated iron[J]. Journal of Chemical Industry & Engineering, 2003, 24(5): 41-44, 56. | |
19 | 李军, 罗孝伟, 李靖, 等. LO-CAT法硫磺回收药剂添加优化研究[J]. 山西化工, 2021, 41(3): 60-62. |
Li J, Luo X W, Li J, et al. Optimization of additive in LO-CAT method for sulfur recovery[J]. Shanxi Chemical Industry, 2021, 41(3): 60-62. | |
20 | 彭宏, 杨忠明, 吴金苗. 新型射流曝气器的研究与应用[J]. 环境工程, 2012, 30(5): 135-139. |
Peng H, Yang Z M, Wu J M. Study and application of new type jet aerator[J]. Environmental Engineering, 2012, 30(5): 135-139. | |
21 | Pétrier C, Combet E, Mason T. Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds[J]. Ultrasonics Sonochemistry, 2007, 14(2): 117-121. |
22 | 彭佳佳. LO-CAT反应器循环溶液pH值高的分析处理[J]. 化工管理, 2020, 33(5): 112-113. |
Peng J J. Analysis and treatment of high pH value of circulating solution in LO-CAT reactor[J]. Chemical Enterprise Management, 2020, 33(5): 112-113. | |
23 | Limtrakul S, Rojanamatin S, Vatanatham T, et al. Gas-lift reactor for hydrogen sulfide removal[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6115-6122. |
24 | de Angelis A, Bellussi G, Pollesel P, et al. New method for H2S removal in acid solutions[J]. ChemSusChem, 2010, 3(7): 829-833. |
25 | 章晓东, 陈艳华. 用PDS法取代ADA法脱硫的生产经验[J]. 燃料与化工, 2004, 35(1): 27-29. |
Zhang X D, Chen Y H. Production experience on replacing ADA desulfurization process with PDS process[J]. Fuel & Chemical Processes, 2004, 35(1): 27-29. | |
26 | 张纬, 李登芳, 齐海强, 等. 超滤膜分离技术在脱硫过程中硫回收及塔堵处理中的应用[J]. 精细与专用化学品, 2016, 24(9): 23-25. |
Zhang W, Li D F, Qi H Q, et al. Application of ultrafiltration membrane separation technology for sulfur recovery and tower plugging in desulfurization process[J]. Fine and Specialty Chemicals, 2016, 24(9): 23-25. | |
27 | 陆海明. PDS脱硫技术在高硫煤气净化中的应用和工业生产实绩[J]. 化肥工业, 2002, 29(3): 21-23, 61. |
Lu H M. Use of PDS desulfurization process in purification of high sulfur gas and industrial production results[J]. Journal of Chemical Fertilizer Industry, 2002, 29(3): 21-23, 61. | |
28 | 黄毅, 李兴建. 酞菁钴磺酸铵催化剂在液膜脱硫装置中的应用[J]. 广东化工, 2007, 34(8): 20-22, 19. |
Huang Y, Li X J. Application of phthalocyanine cobalt sulphonate in liquid film desulfurization process[J]. Guangdong Chemical Industry, 2007, 34(8): 20-22, 19. | |
29 | 曲广杰, 商革, 李海波, 等. 改良蒽醌二磺酸钠(ADA)法脱硫系统稳定运行的几点认识[J]. 化工设计通讯, 2013, 39(5): 22-26. |
Qu G J, Shang G, Li H B, et al. Some opinions on stable operation of the improved ADA desulfurization unit[J]. Chemical Engineering Design Communications, 2013, 39(5): 22-26. | |
30 | 张前, 齐大谦. 浅析天然气长输管道隐患及保护措施[J]. 石化技术, 2021, 28(10): 197-198. |
Zhang Q, Qi D Q. Analysis on hidden dangers and protective measures of long-distance natural gas pipeline[J]. Petrochemical Industry Technology, 2021, 28(10): 197-198. | |
31 | 张阳阳. 天然气的运输方式及其特点[J]. 石化技术, 2021, 28(3): 189-190. |
Zhang Y Y. Transportation mode and characteristics of natural gas[J]. Petrochemical Industry Technology, 2021, 28(3): 189-190. | |
32 | Hua G, Zhang Q, McManus D, et al. Novel non-aqueous Fe(Ⅲ)/Fe(Ⅱ) redox couple for the catalytic oxidation of hydrogen sulfide to sulfur by air[J]. Dalton Transactions, 2006(9): 1147-1156. |
33 | Liu F, Yu J, Qazi A B, et al. Metal-based ionic liquids in oxidative desulfurization: a critical review[J]. Environmental Science & Technology, 2021, 55(3): 1419-1435. |
34 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2[J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
35 | Wu W Z, Han B X, Gao H X, et al. Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie, 2004, 116(18): 2469-2471. |
36 | 马云倩, 王睿. 离子液体和醇胺溶液复配脱硫剂吸收H2S及再生性能[J]. 高等学校化学学报, 2014, 35(7): 1515-1522. |
Ma Y Q, Wang R. H2S absorption capacity of ionic liquid-MDEA-H2O combined desulfurizers[J]. Chemical Journal of Chinese Universities, 2014, 35(7): 1515-1522. | |
37 | Lei Z G, Dai C N, Chen B H. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326. |
38 | Sanchora P, Pandey D K, Kagdada H L, et al. Understanding the fundamental interaction mechanism of hazardous gases and imidazolium based ionic liquids for efficient gas adsorption[J]. Chemical Engineering Science, 2022, 247: 117031. |
39 | Shannon M S, Tedstone J M, Danielsen S P O, et al. Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(15): 5565-5576. |
40 | 余江, 谢海深, 王宏斌, 等. 一种焦炉煤气净化新工艺: 110257109B[P]. 2020-04-28. |
Yu J, Xie H S, Wang H B, et al. New technology for purifying coke oven gas: 110257109B[P]. 2020-04-28. | |
41 | Matsuoka A, Kamio E, Mochida T, et al. Facilitated O2 transport membrane containing Co(Ⅱ)-salen complex-based ionic liquid as O2 carrier[J]. Journal of Membrane Science, 2017, 541: 393-402. |
42 | Wasserscheid P, Keim W. Ionic liquids—new “solutions” for transition metal catalysis[J]. Angewandte Chemie International Edition, 2000, 39(21): 3772-3789. |
43 | Hayashi S, Hamaguchi H O. Discovery of a magnetic ionic liquid [bmim]FeCl4 [J]. Chemistry Letters, 2004, 33(12): 1590-1591. |
44 | Silva W, Zanatta M, Ferreira A S, et al. Revisiting ionic liquid structure-property relationship: a critical analysis[J]. International Journal of Molecular Sciences, 2020, 21(20): 7745. |
45 | 曹领帝, 曾少娟, 张香平, 等. 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66: 1-9. |
Cao L D, Zeng S J, Zhang X P, et al. Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66: 1-9. | |
46 | 王建宏. 1-丁基-3-甲基咪唑乙二胺四乙酸铁催化氧化硫化氢的方法: 103935965B[P]. 2019-12-20. |
Wang J H. Method for performing catalytic oxidation on hydrogen sulfide through 1-butyl-3 -methylimidazole ethylene diamine tetraacetic acid (EDTA) iron: 103935965B[P]. 2019-12-20. | |
47 | Matsuoka A, Kamio E, Matsuyama H. Effect of ligand structures on oxygen absorbability and viscosity of metal-containing ionic liquids[J]. Journal of Molecular Liquids, 2020, 318: 114365. |
48 | 姚加, 王冠淇, 陈航, 等. 螯合型离子液体: 合成、性质以及应用[J]. 化工学报, 2018, 69(1): 203-217. |
Yao J, Wang G Q, Chen H, et al. Chelate ionic liquids: synthesis, properties and applications[J]. CIESC Journal, 2018, 69(1): 203-217. | |
49 | 何义, 余江, 陈灵波. 铁基离子液体湿法氧化硫化氢的反应性能[J]. 化工学报, 2010, 61(4): 963-968. |
He Y, Yu J, Chen L B. Wet oxidation desulfurization of hydrogen sulfide with application of Fe-based ionic liquid[J]. CIESC Journal, 2010, 61(4): 963-968. | |
50 | 姚润生, 李沛沛, 孙磊磊, 等. 氯化咪唑铁基离子液体的物化性能及脱硫机理[J]. 煤炭学报, 2011, 36(1): 135-139. |
Yao R S, Li P P, Sun L L, et al. Physicochemical properties of iron-based chloride imidazole ionic liquid and wet desulfurization mechanism of hydrogen sulfide[J]. Journal of China Coal Society, 2011, 36(1): 135-139. | |
51 | 郭智慧, 张婷婷, 顾佳佳, 等. 铁基离子液的水相合成工艺[J]. 化工学报, 2013, 64: 198-202. |
Guo Z H, Zhang T T, Gu J J, et al. Preparation technology of Fe-based ionic liquids in aqueous phase[J]. CIESC Journal, 2013, 64: 198-202. | |
52 | 马云倩, 王睿. 有机胺型铁基离子液体的H2S吸收和再生性能[J]. 高等学校化学学报, 2014, 35(4): 760-765. |
Ma Y Q, Wang R. H2S absorption capacity and regeneration performance of amine Fe-based ionic liquid[J]. Chemical Journal of Chinese Universities, 2014, 35(4): 760-765. | |
53 | 余江, 张晓东, 李智达, 等 . 一种高效捕集分离HS和CO 及资源化的方法: 109499334B[P]. 2021-06-01. |
Yu J, Zhang X D, Li Z D, et al. A method for efficient capture, separation and resource utilization of HS and CO: 109499334B[P]. 2021-06-01. | |
54 | 钱明超. 铁基离子液体/PEGDE的氧化脱硫动力学研究[D]. 北京:北京化工大学, 2017. |
Qian M C. Kinetic research of iron based liquid with PEGDE oxidation sweetening[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
55 | 余江, 李智达, 施王军, 等. 一种吸收H2S的脱硫液, 脱硫系统及脱硫方法: 111905549A[P]. 2020-11-10. |
Yu J, Li Z D, Shi W J, et al. Desulfurization liquid for absorbing H S, desulfurization system and desulfurization method: 111905549A[P]. 2020-11-10. | |
56 | 余江, 钱明超, 李佳璠, 等. 一种硫化氢净化及硫磺分离工艺: 108689386B[P]. 2020-12-11. |
Yu J, Qian M C, Li J F, et al. A craft for H2S removal and sulfur separation: 108689386B[P]. 2020-12-11. | |
57 | Xie M Y, Li P P, Guo H F, et al. Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 140-145. |
58 | Guo Z H, Zhang T T, Liu T T, et al. Nonaqueous system of iron-based ionic liquid and DMF for the oxidation of hydrogen sulfide and regeneration by electrolysis[J]. Environmental Science & Technology, 2015, 49(9): 5697-5703. |
59 | 张同语, 王南伟, 陈磊, 等. 复配型铁基离子液体氧化脱除H2S动力学研究[J]. 天然气化工(C1化学与化工), 2020, 45(1): 29-34. |
Zhang T Y, Wang N W, Chen L, et al. Kinetics study of oxidation removal of H2S by compound iron-based ionic liquids[J]. Natural Gas Chemical Industry, 2020, 45(1): 29-34. | |
60 | 胡锦超, 高丽霞, 刘伟海, 等. 复合离子液体组成对硫化氢的氧化脱硫性能的影响[J]. 化工学报, 2016, 67: 347-352. |
Hu J C, Gao L X, Liu W H, et al. Effect of components of ionic liquids on oxidation desulfurization performance of hydrogen sulfur[J]. CIESC Journal, 2016, 67: 347-352. | |
61 | Marcus Y, Hefter G. Ion pairing[J]. Chemical Reviews, 2006, 106(11): 4585-4621. |
62 | 张丽, 钱明超, 刘雪珂, 等. 铁基离子液体/NHD吸收氧化H2S的反应动力学[J]. 高等学校化学学报, 2020, 41(2): 317-323. |
Zhang L, Qian M C, Liu X K, et al. Dynamic study of oxidative desulfurization by iron-based ionic liquids/NHD[J]. Chemical Journal of Chinese Universities, 2020, 41(2): 317-323. | |
63 | Hu X B, Lin Q X, Gao J Y, et al. Anion-cation and ion-solvent interaction of some typical ionic liquids in solvents with different dielectric constant[J]. Chemical Physics Letters, 2011, 516(1/2/3): 35-39. |
64 | Boruń A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review[J]. Journal of Molecular Liquids, 2019, 276: 214-224. |
65 | Matsuno R, Kokubo Y, Kumagai S, et al. Molecular design and characterization of ionic monomers with varying ion pair interaction energies[J]. Macromolecules, 2020, 53(5): 1629-1637. |
66 | Thawarkar S, Khupse N D, Kumar A. Solvent-mediated molar conductivity of protic ionic liquids[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(1): 475-482. |
67 | Zhang Y Q, Zhang T, Huo F, et al. Structure and interaction properties of MBIL [Bmim][FeCl4] and methanol: a combined FTIR and simulation study[J]. Journal of Molecular Liquids, 2020, 309: 113061. |
68 | 余江, 张丽, 刘雪珂. 一种铁基离子脱硫液及其再生方法: 112337285A[P]. 2021-02-09. |
Yu J, Zhang L, Liu X K. A method for iron-based ion desulfurization solution and its regeneration: 112337285A[P]. 2021-02-09. | |
69 | Rilo E, Vila J, García-Garabal S, et al. Electrical conductivity of seven binary systems containing 1-ethyl-3-methyl imidazolium alkyl sulfate ionic liquids with water or ethanol at four temperatures[J]. The Journal of Physical Chemistry B, 2013, 117(5): 1411-1418. |
70 | Jarosik A, Krajewski S R, Lewandowski A, et al. Conductivity of ionic liquids in mixtures[J]. Journal of Molecular Liquids, 2006, 123(1): 43-50. |
71 | Ebrahimi S, Kleerebezem R, van Loosdrecht M C M, et al. Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions[J]. Chemical Engineering Science, 2003, 58(2): 417-427. |
72 | Wang Y, Li H R, Han S J. A theoretical investigation of the interactions between water molecules and ionic liquids[J]. The Journal of Physical Chemistry. B, 2006, 110(48): 24646-24651. |
73 | Cascão J, Silva W, Ferreira A S D, et al. Ion pair and solvation dynamics of [Bmim][BF4] + water system[J]. Magnetic Resonance in Chemistry, 2018, 56(2): 127-139. |
74 | Zhang Q G, Wang N N, Yu Z W. The hydrogen bonding interactions between the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and water[J]. The Journal of Physical Chemistry. B, 2010, 114(14): 4747-4754. |
75 | 张俊丰, 童志权. Fe/Cu体系湿式催化氧化一步高效脱除H2S新方法研究[J]. 环境科学学报, 2005, 25(4): 497-501. |
Zhang J F, Tong Z Q. Study on the wet catalytic oxidation of H2S to sulfur by Fe/Cu catalyst[J]. Acta Scientiae Circumstantiae, 2005, 25(4): 497-501. | |
76 | 严召, 童志权, 张俊丰. Zn/Fe体系湿法催化氧化高效脱除沼气中H2S的研究[J]. 环境工程学报, 2008, 2(1): 135-139. |
Yan Z, Tong Z Q, Zhang J F. Efficient removal of H2S from biogas by catalytic wet oxidation with zinc/iron catalyst[J]. Chinese Journal of Environmental Engineering, 2008, 2(1): 135-139. | |
77 | Li Z M, Cai Z P, Zeng Q, et al. Selective catalytic tailoring of the H unit in herbaceous lignin for methyl p-hydroxycinnamate production over metal-based ionic liquids[J]. Green Chemistry, 2018, 20(16): 3743-3752. |
78 | Wang J H, Zhang W D. Oxidative absorption of hydrogen sulfide by iron-containing ionic liquids[J]. Energy & Fuels, 2014, 28(9): 5930-5935. |
79 | Jiang F L, Peng H, Li C, et al. Temperature-dependent structural changes of [Bmim]FeCl4 magnetic ionic liquid characterized by an in situ X-ray absorption fine structure[J]. Chinese Chemical Letters, 2020, 31(3): 801-804. |
80 | Shekaari H, Mansoori Y, Density Sadeghi R., speed of sound, and electrical conductance of ionic liquid 1 -hexyl-3-methyl-imidazolium bromide in water at different temperatures[J]. The Journal of Chemical Thermodynamics, 2008, 40(5): 852-859. |
81 | Li J L, Zhu H, Peng C J, et al. Densities and viscosities for ionic liquids [BMIM][BF4] and [BMIM][Cl] and their binary mixtures at various temperatures and atmospheric pressure[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2994-2999. |
82 | Köddermann T, Paschek D, Ludwig R. Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics[J]. ChemPhysChem, 2007, 8(17): 2464-2470. |
83 | Huang K, Cai D N, Chen Y L, et al. Dual Lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S[J]. ChemPlusChem, 2014, 79(2): 241-249. |
84 | Huang K, Cai D N, Chen Y L, et al. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption[J]. AIChE Journal, 2013, 59(6): 2227-2235. |
85 | 余江, 孙磊磊, 李沛沛, 等. 中高温湿法氧化硫化氢脱硫新工艺[J]. 化工进展, 2010, 29(S1): 708-709. |
Yu J, Sun L L, Li P P, et al. Novel craft for wet oxidation desulfurization of hydrogen sulfide at middle/high temperature[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 708-709. | |
86 | 刘浩, 尹梁操, 陈磊, 等. 铁基离子液体的合成优化与脱硫性能研究[J]. 天然气化工(C1化学与化工), 2018, 43(6): 75-79. |
Liu H, Yin L C, Chen L, et al. Optimized synthesis and desulfurization performance of iron-based ionic liquids[J]. Natural Gas Chemical Industry, 2018, 43(6): 75-79. | |
87 | 王建宏, 朱玲. [bmim]FeCl4离子液体催化氧化硫化氢的研究[J]. 天然气化工(C1化学与化工), 2012, 37(6): 29-32. |
Wang J H, Zhu L. Catalytic oxidation of hydrogen sulfide via [bmim]FeCl4 ionic liquid[J]. Natural Gas Chemical Industry, 2012, 37(6): 29-32. | |
88 | Sakhaeinia H, Jalili A H, Taghikhani V, et al. Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim][Tf2N])[J]. Journal of Chemical & Engineering Data, 2010, 55(12): 5839-5845. |
89 | Wang L Y, Xu Y L, Li Z D, et al. CO2/CH4 and H2S/CO2 selectivity by ionic liquids in natural gas sweetening[J]. Energy & Fuels, 2018, 32(1): 10-23. |
90 | 余江, 张瑜, 殷玮乡, 等. 一种喷淋脱硫系统及脱硫方法: 113041794A[P]. 2021-06-29. |
Yu J, Zhang Y, Yin W X, et al. A spray desulfurization system and desulfurization method: 113041794A[P]. 2021-06-29. | |
91 | 李光晓, 王钊, 范怡平, 等. 气液两相逆流-错流撞击洗涤器内两相流动与传质特性[J]. 过程工程学报, 2015, 15(2): 198-204. |
Li G X, Wang Z, Fan Y P, et al. Flow and mass transfer characteristics in a counter-current crossflow gas-liquid impinging scrubber[J]. The Chinese Journal of Process Engineering, 2015, 15(2): 198-204. | |
92 | 陈常蕊, 孙国刚, 谭华平. 动力波洗涤器脱硫试验研究[J]. 环境工程, 2008, 26(5): 16-19. |
Chen C R, Sun G G, Tan H P. Experimental study on the desulphurization performance of the dynawave scrubber[J]. Environmental Engineering, 2008, 26(5): 16-19. | |
93 | 葛喜乐, 李义烁, 胡锦超, 等. 离子液氧化脱硫(H2S)的流程设计及实验研究[J]. 化工学报, 2013, 64: 170-174. |
Ge X L, Li Y S, Hu J C, et al. Pilot test design of oxidation desulfurization with application of Fe-based ionic liquid[J]. CIESC Journal, 2013, 64: 170-174. | |
94 | 张建伟, 沙新力, 张一凡, 等. 撞击流技术在环保领域的应用研究进展[J]. 化工环保, 2020, 40(1): 7-14. |
Zhang J W, Sha X L, Zhang Y F, et al. Advances in application of impinging stream technology in environmental protection[J]. Environmental Protection of Chemical Industry, 2020, 40(1): 7-14. | |
95 | Wu Y, Li Q, Li F. Desulfurization in the gas-continuous impinging stream gas-liquid reactor[J]. Chemical Engineering Science, 2007, 62(6): 1814-1824. |
96 | 李发永, 张海鹏, 李阳初, 等. 撞击流吸收器吸收性能实验研究[J]. 石油大学学报(自然科学版), 1999, 23(4): 78-80. |
Li F Y, Zhang H P, Li Y C, et al. Experimental study on absorption performance of impinging stream absorber [J]. Journal of the University of Petroleum, China, 1999, 23(4): 78-80. | |
97 | Zhang D D, Zhang N, Yu X W, et al. Effect of humins from different sediments on microbial degradation of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB153), and their polyphasic characterization[J]. RSC Advances, 2017, 7(12): 6849-6855. |
98 | Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634. |
99 | Rau J, Knackmuss H J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria[J]. Environmental Science & Technology, 2002, 36(7): 1497-1504. |
100 | Guo Z H, Zhang T T, Khan M, et al. Electrochemical behavior of iron-based imidazolium chloride ionic liquids[J]. Electrochimica Acta, 2014, 142: 132-143. |
101 | Sitze M S, Schreiter E R, Patterson E V, et al. Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations[J]. Inorganic Chemistry, 2001, 40(10): 2298-2304. |
102 | Hyndman C L, Larachi F, Guy C. Understanding gas-phase hydrodynamics in bubble columns: a convective model based on kinetic theory[J]. Chemical Engineering Science, 1997, 52(1): 63-77. |
103 | Agarwal A, Ng W J, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. |
104 | 王亚茹, 吕页清, 王少娜, 等. 微气泡强化磷酸介质中Fe2+高效氧化研究[J]. 过程工程学报, 2021, 21(8): 887-894. |
Wang Y R, Lyu Y Q, Wang S N, et al. Microbubble enhanced Fe2+ oxidation in phosphoric acid solution[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 887-894. | |
105 | 聂凌, 熊重寒, 汤成, 等. 络合铁脱硫工艺减缓硫堵硫沉积研究[J]. 石油与天然气化工, 2019, 48(6): 24-29. |
Nie L, Xiong C H, Tang C, et al. Research on the process of complex iron desulfurization to slow down sulfur plugging and deposition[J]. Chemical Engineering of Oil & Gas, 2019, 48(6): 24-29. | |
106 | 余江, 杨溢, 郭智慧, 等. 一种从含硫体系中分离硫的分离剂及分离硫的方法: 105084319A[P]. 2015-11-25. |
Yu J, Yang Y, Guo Z H, et al. Separating agent for separating sulfur from sulfur containing system and method for separating sulfur: 105084319A[P]. 2015-11-25. | |
107 | 余江, 李义烁, 顾佳佳, 等. 一步法处理含硫化氢和氨混合气的方法: 104117275A[P]. 2014-10-29. |
Yu J, Li Y S, Gu J J, et al. Method for processing gas mixture containing hydrogen sulfide and ammonia in one step: 104117275A[P]. 2014-10-29. | |
108 | He M G, Liu S Q, Bai L H, et al. Propane/propylene separation and CO2 capture in magnetic ionic liquid [bmim][FeCl4][J]. Chemical Engineering Research and Design, 2018, 137: 186-193. |
109 | 王建宏, 赵馨怡. 一种碱性的非水相湿法催化氧化硫化氢的方法: 107812450A[P]. 2018-03-20. |
Wang J H, Zhao X Y. Method for alkaline non-aqueous wet-process catalytic oxidation of hydrogen sulfide: 107812450A[P]. 2018-03-20. | |
110 | Liu X P, Wang B H, Wang D D, et al. Study on the desulfurization performance of metal-based low transition temperature mixtures: removal of hydrogen sulfide and sulfur recovery[J]. Fuel Processing Technology, 2019, 193: 372-377. |
111 | Liu X P, Wang B H, Lv X L, et al. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles[J]. Journal of Hazardous Materials, 2021, 405: 124271. |
112 | Liu X P, Li J P, Wang R. Desulfurization and regeneration performance of heteropoly compound/ionic liquid solutions at high temperature[J]. Chemical Engineering Journal, 2017, 316: 171-178. |
113 | Ma Y Q, Liu X P, Wang R. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo 12O40—an organic polyoxometalate[J]. Journal of Hazardous Materials, 2017, 331: 109-116. |
[1] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[2] | 王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265. |
[3] | 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420. |
[4] | 谢乐, 蒋崇文. 生物滴滤塔去除高浓度H2S废气的模拟研究[J]. 化工学报, 2021, 72(8): 4346-4353. |
[5] | 杨冬冬, 陈国明, 朱渊, 师吉浩. 海洋平台泄漏硫化氢中毒事故后果动态评估[J]. 化工学报, 2020, 71(8): 3839-3848. |
[6] | 吕雪, 牟玥, 缪逸文, 廖寒露, 冉建速, 郑杰. 三种硫化氢吸收剂吸收效率对比及碘酸钾体系吸收条件优化研究[J]. 化工学报, 2020, 71(10): 4696-4703. |
[7] | 朱林, 艾珍, 王大军, 王伟东, 金鑫, 丁亮, 许光文. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68(S1): 218-224. |
[8] | 曹领帝, 曾少娟, 张香平, 张锁江. 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66(S1): 1-9. |
[9] | 邹海魁, 初广文, 向阳, 罗勇, 孙宝昌, 陈建峰. 超重力反应强化技术最新进展[J]. 化工学报, 2015, 66(8): 2805-2809. |
[10] | 田志章, 李奕帆, 姜忠义, 王少飞. 用于生物气提纯的促进传递膜[J]. 化工学报, 2014, 65(5): 1594-1601. |
[11] | 何小龙1,王芳2,牛晓莉2,陈正平2,于海峰2. NTS螯合剂的合成与EDTA配位铁脱硫协同效应评价[J]. 化工进展, 2014, 33(08): 2170-2173. |
[12] | 秦宏,郑英伟,刘洪鹏,柏静儒,王擎,迟铭书. 油页岩干馏过程中H2S释放的数值模拟[J]. 化工进展, 2014, 33(07): 1735-1739. |
[13] | 韩鹏1,郑仙荣1,2,张肖阳1,常丽萍1. 炭基材料干法脱除硫化氢的研究进展[J]. 化工进展, 2014, 33(05): 1219-1224. |
[14] | 祁贵生,刘有智,王焕,焦纬洲. 超重力湿式氧化法脱除焦炉煤气中硫化氢[J]. 化工进展, 2014, 33(04): 1045-1049. |
[15] | 张兰河1,2,宋 达1,杨日光1,张德义1. 接种辫硫杆菌与活性污泥生物滴滤塔去除硫化氢效果对比[J]. 化工进展, 2013, 32(05): 1157-1162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||