化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 413-420.DOI: 10.11949/0438-1157.20200441
高帅涛1(),刘雪珂1,张丽1,刘芬1,余江1(
),商剑锋2,欧天雄2,周政3,陈平文3
收稿日期:
2020-04-29
修回日期:
2020-10-06
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
余江
作者简介:
高帅涛(1994—),男,硕士研究生,基金资助:
GAO Shuaitao1(),LIU Xueke1,ZHANG Li1,LIU Fen1,YU Jiang1(
),SHANG Jianfeng2,OU Tianxiong2,ZHOU Zheng3,CHEN Pingwen3
Received:
2020-04-29
Revised:
2020-10-06
Online:
2021-06-20
Published:
2021-06-20
Contact:
YU Jiang
摘要:
以煤制氢尾气中的高浓度酸性气体H2S和CO2为对象,以聚乙二醇二甲醚(NHD)为吸收剂,使用PC-SAFT状态方程拟合了酸性气体CO2和H2S在聚乙二醇二甲醚(NHD)溶剂中溶解参数,运用Aspen Plus流程模拟软件,构建两级吸收分离工艺,实现H2S和CO2的高效分离,H2S浓度由30%提升至98.7%,CO2含量由55%提升至99.4%。由此,可以通过高效分离酸性气H2S和CO2,并以提浓后再资源化利用的方式实现酸性气的污染控制。
中图分类号:
高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2[J]. CIESC Journal, 2021, 72(S1): 413-420.
组分 | 摩尔分数/% |
---|---|
CO2 | 54.97 |
N2 | 12.93 |
H2S | 31.38 |
其他 | 0.72 |
表1 某工厂煤制氢尾气组分
Table 1 Tail gas components from coal to hydrogen in a factory
组分 | 摩尔分数/% |
---|---|
CO2 | 54.97 |
N2 | 12.93 |
H2S | 31.38 |
其他 | 0.72 |
项目 | 原料气 | H2S吸收塔进气 | H2S吸收塔尾气 | 吸收塔尾气 | CO2尾气 | H2S尾气 | CO2贫液 | H2S贫液 |
---|---|---|---|---|---|---|---|---|
T/℃ | 38 | 20 | 19.51 | 16.2 | 25 | 25 | 48.5 | 67.7 |
p/MPa | 0.2 | 1 | 0.4 | 0.4 | 0.001 | 0.001 | 0.001 | 0.001 |
摩尔流量/(kmol/h) | 46.78 | 101 | 47.1 | 6.911 | 25.62 | 14.10 | 230 | 130.109 |
分摩尔流量/(kmol/h) | ||||||||
NHD | <0.001 | trace | trace | 0.002 | 0.001 | 230 | 129.999 | |
CO2 | 25.73 | 30 | 40 | 0.001 | 25.51 | 0.18 | 0.04 | <0.001 |
N2 | 7.017 | 7.04 | 7.08 | 6.91 | 0.107 | <0.001 | trace | trace |
H2S | 14.03 | 64.3 | 0 | trace | 0.002 | 13.922 | <0.001 | 0.11 |
摩尔分数 | ||||||||
NHD | 402×10-9 | 118×10-9 | 70×10-9 | 84×10-6 | 84×10-6 | 1 | 0.999 | |
CO2 | 0.55 | 0.3 | 0.85 | 149×10-6 | 0.996 | 0.013 | 181×10-6 | 2×10-6 |
N2 | 0.15 | 0.07 | 0.15 | 1 | 0.004 | 954×10-9 | 12×10-9 | trace |
H2S | 0.3 | 0.63 | 58×10-6 | trace | 67×10-6 | 0.987 | 86×10-9 | 846×10-6 |
表2 模拟优化结果
Table 2 Optimization results of simulation
项目 | 原料气 | H2S吸收塔进气 | H2S吸收塔尾气 | 吸收塔尾气 | CO2尾气 | H2S尾气 | CO2贫液 | H2S贫液 |
---|---|---|---|---|---|---|---|---|
T/℃ | 38 | 20 | 19.51 | 16.2 | 25 | 25 | 48.5 | 67.7 |
p/MPa | 0.2 | 1 | 0.4 | 0.4 | 0.001 | 0.001 | 0.001 | 0.001 |
摩尔流量/(kmol/h) | 46.78 | 101 | 47.1 | 6.911 | 25.62 | 14.10 | 230 | 130.109 |
分摩尔流量/(kmol/h) | ||||||||
NHD | <0.001 | trace | trace | 0.002 | 0.001 | 230 | 129.999 | |
CO2 | 25.73 | 30 | 40 | 0.001 | 25.51 | 0.18 | 0.04 | <0.001 |
N2 | 7.017 | 7.04 | 7.08 | 6.91 | 0.107 | <0.001 | trace | trace |
H2S | 14.03 | 64.3 | 0 | trace | 0.002 | 13.922 | <0.001 | 0.11 |
摩尔分数 | ||||||||
NHD | 402×10-9 | 118×10-9 | 70×10-9 | 84×10-6 | 84×10-6 | 1 | 0.999 | |
CO2 | 0.55 | 0.3 | 0.85 | 149×10-6 | 0.996 | 0.013 | 181×10-6 | 2×10-6 |
N2 | 0.15 | 0.07 | 0.15 | 1 | 0.004 | 954×10-9 | 12×10-9 | trace |
H2S | 0.3 | 0.63 | 58×10-6 | trace | 67×10-6 | 0.987 | 86×10-9 | 846×10-6 |
1 | Mirfendereski S M, Niazi Z, Mohammadi T. Selective removal of H2S from gas streams with high CO2 concentration using hollow-fiber membrane contractors [J]. Chemical Engineering & Technology, 2019, 42(1): 196-208. |
2 | Afsharpour A, Haghtalab A. Simultaneous measurement absorption of CO2 and H2S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid [J]. International Journal of Greenhouse Gas Control, 2017, 58: 71-80. |
3 | 吴振中, 李发永, 曹作刚. 含高浓度H2S炼厂酸性气体处理新工艺[J]. 石油化工高等学校学报, 2005, 18(4): 12-15. |
Wu Z Z, Li F Y, Cao Z G. New process for treating high concentrated H2S refinery acidic gas [J]. Journal of Petrochemical Universities, 2005, 18(4): 12-15. | |
4 | Li Y, Huang W J, Zheng D X, et al. Solubilities of CO2 capture absorbents 2-ethoxyethyl ether, 2-butoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate [J]. Fluid Phase Equilibria, 2014, 370: 1-7. |
5 | Madeddu C, Errico M, Baratti R. Solvent recovery system for a CO2-MEA reactive absorption-stripping plant [J]. Chemical Engineering Transactions, 2019, 74: 805-810. |
6 | Shiflett M B, Niehaus A M S, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][MeSO4] [J]. Journal of Chemical & Engineering Data, 2010, 55(11): 4785-4793. |
7 | 孟艳芳. 常见煤制气中的酸性气体脱除工艺技术特性对比与选择[J]. 山西能源学院学报, 2017, 30(3): 89-90, 94. |
Meng Y F. Comparison and selection of technical characteristics of acid gas removal in common coal gasification [J]. Journal of Shanxi Institute of Energy, 2017, 30(3): 89-90, 94. | |
8 | 陈昌介, 何金龙, 温崇荣. 高含硫天然气净化技术现状及研究方向[J]. 天然气工业, 2013, 33(1): 112-115. |
Chen C J, He J L, Wen C R. A state of the art of high-sulfur natural gas sweetening technology and its research direction [J]. Natural Gas Industry, 2013, 33(1): 112-115. | |
9 | Ma C Y, Liu C, Lu X H, et al. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading [J]. Applied Energy, 2018, 225: 437-447. |
10 | Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology [J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193. |
11 | 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448. |
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry [J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448. | |
12 | 李正西. NHD脱硫脱碳技术应用 [J]. 煤化工, 2004, 32(3): 53-57. |
Li Z X. Application of the NHD technology for desulfurization and decarbonization [J]. Coal Chemical Industry, 2004, 32(3): 53-57. | |
13 | 林民鸿. NHD气体净化技术理论与实践(上) [J]. 化肥工业, 2000, 27(4): 17-21. |
Lin M H. NHD gas purification technology: theory and practice (Ⅰ) [J]. Journal of the Chemical Fertilizer Industry, 2000, 27(4): 17-21. | |
14 | Im D, Roh K, Kim J, et al. Economic assessment and optimization of the Selexol process with novel additives [J]. International Journal of Greenhouse Gas Control, 2015, 42: 109-116. |
15 | Ramzan N, Shakeel U, Güngör A, et al. Techno-economic analysis of selexol and sulfinol processes for pre-combustion CO2 capture [C]// 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Islamabad, Pakistan, 2018: 1-6. |
16 | 邱朋华, 李丹丹, 徐宝龙, 等. 基于Aspen Plus对Selexol分离CO2流程的分析[J]. 中国电机工程学报, 2014, 34(8): 1231-1237. |
Qiu P H, Li D D, Xu B L, et al. Analysis of CO2 separation by Selexol based on Aspen Plus [J]. Proceedings of the CSEE, 2014, 34(8): 1231-1237. | |
17 | 朱林, 艾珍, 王大军, 等. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68: 218-224. |
Zhu L, Ai Z, Wang D J, et al. Simulation and comparison of H2S and CO2 separation processes using N-formyl morpholine and polyethylene glycol dimethyl ether solvent [J]. CIESC Journal, 2017, 68: 218-224. | |
18 | Mohammed I Y, Samah M, Sabina G, et al. Comparison of SelexolTM and Rectisol® technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production [J]. International Journal of Engineering Research, 2014, 3(12): 742-744. |
19 | Kapetaki Z, Brandani P, Brandani S, et al. Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant [J]. International Journal of Greenhouse Gas Control, 2015, 39: 17-26. |
20 | Bagchi B, Sati S, Shilapuram V. Modelling solubility of CO2 and hydrocarbon gas mixture in ionic liquid ([emim][FAP]) using ASPEN Plus [J]. Journal of Molecular Liquids, 2016, 224: 30-42. |
21 | Wang Y L, Liu X B, Kraslawski A, et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid [J]. Journal of Cleaner Production, 2019, 213: 480-490. |
22 | 霍月洋. 利用Aspen Plus计算气体物质的溶解度[J]. 浙江化工, 2015, 46(4): 48-50. |
Huo Y Y. Simulation and calculation for the solubility of gas by Aspen Plus [J]. Zhejiang Chemical Industry, 2015, 46(4): 48-50. | |
23 | Xu Y M, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 569-573. |
24 | Ros J A, Brilman D W F, Bernhardsen I M, et al. Describing CO2-Absorbent Properties in AspenPlus® [M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1087-1092. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[8] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[9] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[10] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[11] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[12] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[13] | 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829. |
[14] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[15] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1464
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 952
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||