化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 413-420.doi: 10.11949/0438-1157.20200441

• 分离工程 • 上一篇    下一篇

Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离

高帅涛1(),刘雪珂1,张丽1,刘芬1,余江1(),商剑锋2,欧天雄2,周政3,陈平文3   

  1. 1.北京化工大学化学工程学院,能源环境催化北京市重点试验室环境催化与分离过程研究组,北京 100029
    2.中国石油化工有限公司普光分公司天然气技术管理部,四川 达州 635000
    3.中国石油化工有限公司中原油田分公司天然气处理厂,河南 濮阳 457000
  • 收稿日期:2020-04-29 修回日期:2020-10-06 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 余江 E-mail:2017310010@buct.edu.cn;yujiang@mail.buct.edu.cn
  • 作者简介:高帅涛(1994—),男,硕士研究生,2017310010@buct.edu.cn
  • 基金资助:
    国家科技部“十三五”重大专项项目(2016ZX05017-004)

Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2

GAO Shuaitao1(),LIU Xueke1,ZHANG Li1,LIU Fen1,YU Jiang1(),SHANG Jianfeng2,OU Tianxiong2,ZHOU Zheng3,CHEN Pingwen3   

  1. 1.Research Group of Environmental Catalysis & Separation Process, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2.Natural Gas Technology Management Department of Puguang Branch of Sinopec, Dazhou 635000, Sichuan, China
    3.Natural Gas Treatment Plant of Zhongyuan Oilfield Branch of Sinopec, Puyang 457000, Henan, China
  • Received:2020-04-29 Revised:2020-10-06 Published:2021-06-20 Online:2021-06-20
  • Contact: YU Jiang E-mail:2017310010@buct.edu.cn;yujiang@mail.buct.edu.cn

摘要:

以煤制氢尾气中的高浓度酸性气体H2S和CO2为对象,以聚乙二醇二甲醚(NHD)为吸收剂,使用PC-SAFT状态方程拟合了酸性气体CO2和H2S在聚乙二醇二甲醚(NHD)溶剂中溶解参数,运用Aspen Plus流程模拟软件,构建两级吸收分离工艺,实现H2S和CO2的高效分离,H2S浓度由30%提升至98.7%,CO2含量由55%提升至99.4%。由此,可以通过高效分离酸性气H2S和CO2,并以提浓后再资源化利用的方式实现酸性气的污染控制。

关键词: 二氧化碳, 硫化氢, 吸收分离, Aspen模拟, 聚乙二醇二甲醚

Abstract:

In this paper, polyethylene glycol dimethyl ether (NHD) was used as absorbent to treat the tail gas with high concentration of H2S and CO2 from the coal to hydrogen process. The solubility parameters of H2S and CO2 in NHD were fitted with the PC-SAFT equation of state. A two-stage absorptive separation process was built with the application of Aspen Plus process simulation software to realize the high effective separation of H2S and CO2. The results show that the concentration of the separated H2S and CO2 could be reached from 30% to 98.7% and 55% to 99.4%, respectively. Hence, the acid gas pollution control can be done by high efficient separation of H2S and CO2 to get high single concentration for reuse and resource.

Key words: carbon dioxide, hydrogen sulfide, absorption separation, Aspen simulation, polyethylene glycol dimethyl ether

中图分类号: 

  • TQ 028.1

表1

某工厂煤制氢尾气组分"

组分摩尔分数/%
CO254.97
N212.93
H2S31.38
其他0.72

图1

流程模拟"

图2

溶解度模拟流程"

图3

拟合得到的在不同压力下的溶解度曲线"

图4

一级闪蒸条件与二级闪蒸尾气H2S摩尔分数的关系"

图5

吸收剂条件与H2S摩尔分数的关系"

图6

吸收塔条件与H2S摩尔分数的关系"

图7

二级闪蒸温度与H2S摩尔分数的关系"

图8

吸收剂条件与相应组分摩尔分数关系"

图9

CO2吸收塔条件与相应组分摩尔分数关系"

图10

分流器流量与二级闪蒸尾气H2S摩尔分数关系"

图11

CO2闪蒸温度与贫液中CO2的摩尔分数关系"

表2

模拟优化结果"

项目原料气H2S吸收塔进气H2S吸收塔尾气吸收塔尾气CO2尾气H2S尾气CO2贫液H2S贫液
T/℃382019.5116.2252548.567.7
p/MPa0.210.40.40.0010.0010.0010.001
摩尔流量/(kmol/h)46.7810147.16.91125.6214.10230130.109
分摩尔流量/(kmol/h)
NHD<0.001tracetrace0.0020.001230129.999
CO225.7330400.00125.510.180.04<0.001
N27.0177.047.086.910.107<0.001tracetrace
H2S14.0364.30trace0.00213.922<0.0010.11
摩尔分数
NHD402×10-9118×10-970×10-984×10-684×10-610.999
CO20.550.30.85149×10-60.9960.013181×10-62×10-6
N20.150.070.1510.004954×10-912×10-9trace
H2S0.30.6358×10-6trace67×10-60.98786×10-9846×10-6
1 Mirfendereski S M, Niazi Z, Mohammadi T. Selective removal of H2S from gas streams with high CO2 concentration using hollow-fiber membrane contractors [J]. Chemical Engineering & Technology, 2019, 42(1): 196-208.
2 Afsharpour A, Haghtalab A. Simultaneous measurement absorption of CO2 and H2S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid [J]. International Journal of Greenhouse Gas Control, 2017, 58: 71-80.
3 吴振中, 李发永, 曹作刚. 含高浓度H2S炼厂酸性气体处理新工艺[J]. 石油化工高等学校学报, 2005, 18(4): 12-15.
Wu Z Z, Li F Y, Cao Z G. New process for treating high concentrated H2S refinery acidic gas [J]. Journal of Petrochemical Universities, 2005, 18(4): 12-15.
4 Li Y, Huang W J, Zheng D X, et al. Solubilities of CO2 capture absorbents 2-ethoxyethyl ether, 2-butoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate [J]. Fluid Phase Equilibria, 2014, 370: 1-7.
5 Madeddu C, Errico M, Baratti R. Solvent recovery system for a CO2-MEA reactive absorption-stripping plant [J]. Chemical Engineering Transactions, 2019, 74: 805-810.
6 Shiflett M B, Niehaus A M S, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][MeSO4] [J]. Journal of Chemical & Engineering Data, 2010, 55(11): 4785-4793.
7 孟艳芳. 常见煤制气中的酸性气体脱除工艺技术特性对比与选择[J]. 山西能源学院学报, 2017, 30(3): 89-90, 94.
Meng Y F. Comparison and selection of technical characteristics of acid gas removal in common coal gasification [J]. Journal of Shanxi Institute of Energy, 2017, 30(3): 89-90, 94.
8 陈昌介, 何金龙, 温崇荣. 高含硫天然气净化技术现状及研究方向[J]. 天然气工业, 2013, 33(1): 112-115.
Chen C J, He J L, Wen C R. A state of the art of high-sulfur natural gas sweetening technology and its research direction [J]. Natural Gas Industry, 2013, 33(1): 112-115.
9 Ma C Y, Liu C, Lu X H, et al. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading [J]. Applied Energy, 2018, 225: 437-447.
10 Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology [J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193.
11 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448.
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry [J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448.
12 李正西. NHD脱硫脱碳技术应用 [J]. 煤化工, 2004, 32(3): 53-57.
Li Z X. Application of the NHD technology for desulfurization and decarbonization [J]. Coal Chemical Industry, 2004, 32(3): 53-57.
13 林民鸿. NHD气体净化技术理论与实践(上) [J]. 化肥工业, 2000, 27(4): 17-21.
Lin M H. NHD gas purification technology: theory and practice (Ⅰ) [J]. Journal of the Chemical Fertilizer Industry, 2000, 27(4): 17-21.
14 Im D, Roh K, Kim J, et al. Economic assessment and optimization of the Selexol process with novel additives [J]. International Journal of Greenhouse Gas Control, 2015, 42: 109-116.
15 Ramzan N, Shakeel U, Güngör A, et al. Techno-economic analysis of selexol and sulfinol processes for pre-combustion CO2 capture [C]// 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Islamabad, Pakistan, 2018: 1-6.
16 邱朋华, 李丹丹, 徐宝龙, 等. 基于Aspen Plus对Selexol分离CO2流程的分析[J]. 中国电机工程学报, 2014, 34(8): 1231-1237.
Qiu P H, Li D D, Xu B L, et al. Analysis of CO2 separation by Selexol based on Aspen Plus [J]. Proceedings of the CSEE, 2014, 34(8): 1231-1237.
17 朱林, 艾珍, 王大军, 等. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68: 218-224.
Zhu L, Ai Z, Wang D J, et al. Simulation and comparison of H2S and CO2 separation processes using N-formyl morpholine and polyethylene glycol dimethyl ether solvent [J]. CIESC Journal, 2017, 68: 218-224.
18 Mohammed I Y, Samah M, Sabina G, et al. Comparison of SelexolTM and Rectisol® technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production [J]. International Journal of Engineering Research, 2014, 3(12): 742-744.
19 Kapetaki Z, Brandani P, Brandani S, et al. Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant [J]. International Journal of Greenhouse Gas Control, 2015, 39: 17-26.
20 Bagchi B, Sati S, Shilapuram V. Modelling solubility of CO2 and hydrocarbon gas mixture in ionic liquid ([emim][FAP]) using ASPEN Plus [J]. Journal of Molecular Liquids, 2016, 224: 30-42.
21 Wang Y L, Liu X B, Kraslawski A, et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid [J]. Journal of Cleaner Production, 2019, 213: 480-490.
22 霍月洋. 利用Aspen Plus计算气体物质的溶解度[J]. 浙江化工, 2015, 46(4): 48-50.
Huo Y Y. Simulation and calculation for the solubility of gas by Aspen Plus [J]. Zhejiang Chemical Industry, 2015, 46(4): 48-50.
23 Xu Y M, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 569-573.
24 Ros J A, Brilman D W F, Bernhardsen I M, et al. Describing CO2-Absorbent Properties in AspenPlus® [M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1087-1092.
[1] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[2] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[3] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[4] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
[5] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[6] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[7] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[8] 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
[9] 王小西, 李笑艳, 王保伟. 介质阻挡放电微等离子体分解二氧化碳研究[J]. 化工学报, 2022, 73(3): 1343-1350.
[10] 黄子轩, 陈欢, 李海, 王明龙, 陈光进, 刘蓓. ZIF-8浆液中试分离CO2/N2过程模拟及能耗分析[J]. 化工学报, 2022, 73(1): 322-331.
[11] 陈一宇, 朱春英, 付涛涛, 马友光. 三维菱形结构微通道内气液传质与强化[J]. 化工学报, 2022, 73(1): 175-183.
[12] 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392.
[13] 王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265.
[14] 庞子凡, 蒋斌, 朱春英, 马友光, 付涛涛. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133.
[15] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!