化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1772-1780.DOI: 10.11949/0438-1157.20221524
白天昊1,2(), 王晓雯1,2, 杨梦滋1,2, 段新伟1,2, 米杰1,2, 武蒙蒙1,2()
收稿日期:
2022-11-23
修回日期:
2023-03-08
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
武蒙蒙
作者简介:
白天昊(1997—),男,硕士研究生,1521725917@qq.com
基金资助:
Tianhao BAI1,2(), Xiaowen WANG1,2, Mengzi YANG1,2, Xinwei DUAN1,2, Jie MI1,2, Mengmeng WU1,2()
Received:
2022-11-23
Revised:
2023-03-08
Online:
2023-04-05
Published:
2023-06-02
Contact:
Mengmeng WU
摘要:
高温煤气脱硫是煤炭清洁转化过程中的关键技术之一。前期研究表明,锌铝类水滑石基衍生氧化物可高效脱除高温煤气中的H2S,但其脱硫过程中COS释放规律缺乏定性定量研究。探讨了类水滑石衍生锌基氧化物脱硫过程COS释放的可能途径,包括反应热力学分析及实验研究,提出采用镍掺杂策略以抑制脱硫剂脱硫过程中生成COS。研究表明,锌铝类水滑石基衍生氧化物脱除煤气中H2S时产生COS的主要途径是H2S与CO2间的气固相催化反应,该途径所释放COS量占总释放量的78%。通过镍助剂的掺杂使得锌铝类水滑石基衍生氧化物既保持了原有结构形貌,也有效抑制了其脱硫过程中COS的释放;其中最佳镍掺杂量(Zn/Ni摩尔比为30)脱硫剂穿透前的COS释放量减少88%,而硫容仅降低1.5%。
中图分类号:
白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780.
Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite[J]. CIESC Journal, 2023, 74(4): 1772-1780.
图2 模拟煤气气氛和简单气氛下ZnAl-HTO穿透曲线(a)及模拟煤气气氛下硫容与COS释放量(b)
Fig.2 Breakthrough curve of ZnAl-HTO under simulated gas atmosphere and simple atmosphere (a), and sulfur capacity and COS release amount under simulated gas atmosphere (b)
反应编号 | 反应方程式 | ΔH/ (kJ/mol) | KӨ | X/% |
---|---|---|---|---|
1 | H2S+CO | -2.6 | 3.3×10-2 | 79 |
2 | H2S+CO2 | 34.6 | 6.6×10-3 | 33 |
3 | H2S | 34.1 | 8.6×10-4 | 0.008 |
4 | S+CO | -36.7 | 38.4 | 99.6 |
5 | 2S+2CO2 | 222.8 | 4.5×10-8 | 69.2 |
6 | ZnS+CO | 181.1 | 1.0×10-11 | 7.2×10-7 |
7 | ZnS+CO2 | 108.0 | 7.3×10-8 | 7.2×10-5 |
表1 ZnAl-HTO脱硫过程中COS生成可能的途径及相应的热力学参数
Table 1 Possible COS formation pathways and corresponding thermodynamic parameters
反应编号 | 反应方程式 | ΔH/ (kJ/mol) | KӨ | X/% |
---|---|---|---|---|
1 | H2S+CO | -2.6 | 3.3×10-2 | 79 |
2 | H2S+CO2 | 34.6 | 6.6×10-3 | 33 |
3 | H2S | 34.1 | 8.6×10-4 | 0.008 |
4 | S+CO | -36.7 | 38.4 | 99.6 |
5 | 2S+2CO2 | 222.8 | 4.5×10-8 | 69.2 |
6 | ZnS+CO | 181.1 | 1.0×10-11 | 7.2×10-7 |
7 | ZnS+CO2 | 108.0 | 7.3×10-8 | 7.2×10-5 |
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
ZnAl-HTO | 31 | 0.09 |
Zn30Ni1Al-HTO | 37 | 0.22 |
Zn20Ni1Al-HTO | 41 | 0.20 |
Zn10Ni1Al-HTO | 43 | 0.27 |
表2 镍掺杂前后脱硫剂孔结构参数
Table 2 Structural parameters of desulfurizer holes before and after nickel doping
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
ZnAl-HTO | 31 | 0.09 |
Zn30Ni1Al-HTO | 37 | 0.22 |
Zn20Ni1Al-HTO | 41 | 0.20 |
Zn10Ni1Al-HTO | 43 | 0.27 |
图6 ZnAl-HTO(a)、Zn30Ni1Al-HTO(b)、Zn20Ni1Al-HTO(c)和Zn10Ni1Al-HTO(d)的扫描电镜图
Fig.6 SEM images of ZnAl-HTO (a), Zn30Ni1Al-HTO (b), Zn20Ni1Al-HTO (c), and Zn10Ni1Al-HTO (d)
图7 ZnNiAl-HTO对应的出口H2S/COS曲线(a)及吸硫饱和时对应的饱和硫容与COS释放量(b)
Fig.7 The outlet H2S / COS curve (a) corresponding to ZnNiAl-HTO and the corresponding saturated sulfur capacity and COS release amount (b) during sulfur absorption saturation
图8 ZnNiAl-HTO穿透前对应的穿透曲线(a);穿透硫容及COS释放量(b)
Fig.8 Breakthrough curve before ZnNiAl-HTO breakthrough (a) and breakthrough capacity and COS release amount (b)
1 | 刘臻, 次东辉, 方薪晖, 等. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J]. 洁净煤技术, 2022, 28(2):130-136. |
Liu Z, Ci D H, Fang X H, et al. Concept of carbon cycle based on co-gasification of carbon containing waste and coal and analysis of carbon emission reduction potential[J].Clean Coal Technology, 2022, 28(2):130-136. | |
2 | Faraji F, Safarik I, Strausz O P, et al. CO-catalyzed conversion of H2S to H2 + S(1): Reaction between CO and H2S[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3854-3860. |
3 | 陈阳, 杨芊. “双碳”背景下现代煤化工高质量发展研究[J]. 煤炭加工与综合利用, 2022(1):50-54. |
Chen Y, Yang Q. Research on high-quality development of modern coal chemical industry under background of “double-carbon”[J].Coal Processing & Comprehensive Utilization, 2022(1):50-54. | |
4 | Feng Y, Lu J J, Wang J C, et al. Desulfurization sorbents for green and clean coal utilization and downstream toxics reduction: a review and perspectives[J]. Journal of Cleaner Production, 2020, 273: 123080. |
5 | Liu D J, Wang Q, Wu J, et al. A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas[J]. Environmental Chemistry Letters, 2019, 17(1): 259-276. |
6 | Wakker J P, Gerritsen A W, Moulijn J A. High temperature hydrogen sulfide and carbonyl sulfide removal with manganese oxide (MnO) and iron oxide (FeO) on γ-alumina acceptors[J]. Industrial & Engineering Chemistry Research, 1993, 32(1): 139-149. |
7 | Sasaoka E, Taniguchi K, Hirano S, et al. Catalytic activity of ZnS formed from desulfurization sorbent ZnO for conversion of COS to H2S[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1102-1106. |
8 | Sasaoka E, Taniguchi K, Uddin M A, et al. Characterization of reaction between ZnO and COS[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2389-2394. |
9 | Park N K, Lee J D, Lee T J, et al. The preparation of a high surface area metal oxide prepared by a matrix-assisted method for hot gas desulphurization[J]. Fuel, 2005, 84(17): 2165-2171. |
10 | 上官炬, 常丽萍, 苗茂谦. 气体净化分离技术[M]. 北京: 化学工业出版社, 2012. |
Shangguan J, Chang L P, Miao M Q. Gas Purification and Separation Technology[M]. Beijing: Chemical Industry Press, 2012. | |
11 | Li L Y, King D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today, 2006, 116(4):537-541. |
12 | Oakey J E, Simms N J, Peng W W. The development of hot gas desulphurization systems for gasification combined cycle power generation[R]. Didcot, 2000. |
13 | Yu J L, Chang L P, Xie W, et al. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization[J]. Korean Journal of Chemical Engineering, 2011, 28(4): 1054-1057. |
14 | Li F, Zhang Z, Ren X, et al. A preliminary study on the formation and removal of COS during hot coal gas desulfurization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 33(4): 327-334. |
15 | Yang H Y, Sothen R, Cahela D R, et al. Breakthrough characteristics of reformate desulfurization using ZnO sorbents for logistic fuel cell power systems[J]. Industrial & Engineering Chemistry Research, 2008, 47(24): 10064-10070. |
16 | Fukuda K, Dokiya M, Kameyama T, et al. Catalytic activity of metal sulfides for the reaction, H2S+CO=H2+COS[J]. Journal of Catalysis, 1977, 49(3): 379-382. |
17 | Zhang F L, Wei Z, Jiang G X, et al. Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts[J]. Applied Catalysis B: Environmental, 2022, 319: 121912. |
18 | Fellmuth P, Lutz W, Bülow M. Influence of weakly coordinated cations and basic sites upon the reaction of H2S and CO2 on zeolites[J]. Zeolites, 1987, 7(4): 367-371. |
19 | 畅炳蔚. 类水滑石基锌铝氧化物的制备及其脱硫性能的研究[D]. 太原:太原理工大学, 2018. |
Chang B W. Preparation and desulfurization performance of ZnAl LDO based on hydrotalcitr-like compounds[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
20 | 郭恩惠. 类水滑石衍生锌基复合氧化物可控合成及其煤气脱硫性能研究[D]. 太原:太原理工大学, 2020. |
Guo E H. Controllable synthesis and desulfurization performance of hydrotalcite-like derived Zn-based composite oxide[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
21 | Wu M M, Guo E H, Li Q C, et al. Mesoporous Zn-Fe-based binary metal oxide sorbent with sheet-shaped morphology: synthesis and application for highly efficient desulfurization of hot coal gas[J]. Chemical Engineering Journal, 2020, 389: 123750. |
22 | Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of COS over calcined CoNiAl hydrotalcite-like compounds modified by cerium[J]. Applied Clay Science, 2012, 70: 8-13. |
23 | Zhao S Z, Yi H H, Tang X L, et al. Mechanism of activity enhancement of the Ni based hydrotalcite-derived materials in carbonyl sulfide removal[J]. Materials Chemistry and Physics, 2018, 205: 35-43. |
24 | Zhao S Z, Yi H H, Tang X L, et al. Calcined ZnNiAl hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal[J]. Catalysis Today, 2019, 327: 161-167. |
25 | Kaloidas V, Papayannakos N. Kinetics of thermal, non-catalytic decomposition of hydrogen sulphide[J]. Chemical Engineering Science, 1989, 44(11): 2493-2500. |
26 | 冯续. 氧化锌脱硫剂研究动向[J]. 化学工业与工程技术, 2008, 29(2): 31-35. |
Feng X. Resarch trend of zinc oxide desulphurizing agents[J]. Journal of Chemical Industry & Engineering, 2008, 29(2): 31-35. | |
27 | 上官炬, 郭汉贤. 氧化铝基COS、CS2水解催化剂表面碱性和催化作用[J]. 分子催化,1997, 11(5): 337-342. |
Shangguan J, Guo H X. The surface basicity and catalysis over the alumina based catalysts for COS and CS2 hydrolysis[J]. Journal of Molecular Catalysis, 1997, 11(5): 337-342. | |
28 | 王泽鑫. 改性氧化锌基脱硫剂制备及脱硫性能的研究[D]. 太原: 太原理工大学, 2018. |
Wang Z X. Study on the preparation of modified zinc oxide based sorbent and its performance of removing sulfide[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
29 | Li Q C, Wang X W, Zhang R, et al. Insights into the effects of metal-ion doping on the structure and hot-coal-gas desulfurization properties of Zn-based sorbents supported on SBA-15[J]. Fuel, 2022, 315: 123198. |
30 | Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703. |
31 | 赵芸. 层状双金属氢氧化物及氧化物的可控制备和应用研究[D]. 北京: 北京化工大学, 2002. |
Zhao Y. Preparation of LDH and LDO in a controllable fashion for specific applications[D]. Beijing: Beijing University of Chemical Technology, 2002. | |
32 | Liu Q, Zhang Z F, Liu B S, et al. Rare earth oxide doping and synthesis of spinel ZnMn2O4/KIT-1 with double gyroidal mesopores for desulfurization nature of hot coal gas[J]. Applied Catalysis B: Environmental, 2018, 237: 855-865. |
33 | Wu M M, Li Q C, Wang X W, et al. Structure characteristics and hot-coal-gas desulfurization properties of Zn-based sorbents supported on mesoporous silica with different pore-arrangement patterns: a comparison study[J]. Energy & Fuels, 2021, 35(3): 2456-2467. |
34 | Wang X W, Zhang R, Li Q C, et al. Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas[J]. Fuel, 2023, 332: 126052. |
35 | Zhang X Y, Wei L, Guo X. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: enhanced capacitive storage and cycling performance for supercapacitors[J]. Chemical Engineering Journal, 2018, 353: 615-625. |
36 | Zheng J H, Zhang R M, Wang X G, et al. Hydrothermally synthesized Ni(OH)2@Zn(OH)2 composite with enhanced electrochemical performance for supercapacitors[J]. Research on Chemical Intermediates, 2018, 44(11): 6637-6648. |
37 | Sun P X, Wang C G, He W D, et al. One-step synthesis of 3D network-like Ni x Co1– x MoO4 porous nanosheets for high performance battery-type hybrid supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10139-10147. |
38 | Mendoza-Damián G, Tzompantzi F, Mantilla A, et al. Improved photocatalytic activity of SnO2-ZnAl LDH prepared by one step Sn4+ incorporation[J]. Applied Clay Science, 2016, 121/122: 127-136. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||