化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1863-1882.DOI: 10.11949/0438-1157.20220069
收稿日期:
2022-01-12
修回日期:
2022-02-25
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
刘昌会
作者简介:
刘庆祎(1998—),男,硕士研究生,基金资助:
Qingyi LIU(),Tong XIAO,Wenjie SUN,Jiahao ZHANG,Changhui LIU()
Received:
2022-01-12
Revised:
2022-02-25
Online:
2022-05-05
Published:
2022-05-24
Contact:
Changhui LIU
摘要:
近年来,随着一次能源紧缺,能源利用效率的重要性日益提升,相变储热可有效提升能源利用效率,人们开始将相变材料同其他物质相结合以进一步拓展其应用范围。纳米二氧化钛具有低成本、无毒、高导电性、高化学稳定性、高热稳定性等优点,现已被广泛研究用于相变储热领域。本文综述了纳米二氧化钛在相变储能领域中的研究进展,从纳米二氧化钛在复合相变材料中的功能出发,主要分为两个部分:(1)纳米二氧化钛在定型相变材料中的应用研究现状;(2)纳米二氧化钛在其他功能相变材料中的应用研究进展。旨在为纳米二氧化钛在相变储能领域的进一步应用提供理论依据与参考。
中图分类号:
刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
Qingyi LIU, Tong XIAO, Wenjie SUN, Jiahao ZHANG, Changhui LIU. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882.
1 | Zhang D, Tian S L, Xiao D Y. Experimental study on the phase change behavior of phase change material confined in pores[J]. Solar Energy, 2007, 81(5): 653-660. |
2 | Liu H, Wang X D, Wu D Z, et al. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness[J]. Solar Energy Materials and Solar Cells, 2019, 193: 184-197. |
3 | 刘昌会, 刘红莉, 张天键, 等. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341. |
Liu C H, Liu H L, Zhang T J, et al. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system [J]. CIESC Journal, 2021, 72(3):1333-1341. | |
4 | Li T X, Lee J H, Wang R Z, et al. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J]. Energy, 2013, 55: 752-761. |
5 | Phadnis A, Rykaczewski K. The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-158. |
6 | Li T X, Wu M Q, Wu S, et al. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage[J]. Nano Energy, 2021, 89: 106338. |
7 | Li T X, Xu J X, Wu D L, et al. High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating[J]. Applied Energy, 2019, 248: 406-414. |
8 | Liu C H, Zhang J H, Liu J, et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer[J]. Angewandte Chemie (International Ed. in English), 2021, 60(25): 13978-13987. |
9 | Liu C H, Zong J H, Zhang J H, et al. Knitting aryl network polymers (KAPs)-embedded copper foam enables highly efficient thermal energy storage[J]. Journal of Materials Chemistry A, 2020, 8(30): 15177-15186. |
10 | Zhang X Y, Wang X D, Wu D Z. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness[J]. Energy, 2016, 111: 498-512. |
11 | 刘昌会, 张海悦, 李业美, 等.低共熔溶剂在储能与传热方面的研究进展[J]. 化工学报, 2021, 72(10): 4973-4986. |
Liu C H, Zhang H Y, Li Y M, et al. Recent advances of deep eutectic solvents in energy storage and heat transfer [J]. CIESC Journal, 2021, 72(10): 4973-4986. | |
12 | Wu M Q, Wu S, Cai Y F, et al. Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management[J]. Energy Storage Materials, 2021, 42: 380-417. |
13 | He L J, Mo S P, Lin P C, et al. D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability[J]. Applied Energy, 2020, 268: 115020. |
14 | Wu M, Xu C, He Y L. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules[J]. Applied Energy, 2014, 121: 184-195. |
15 | Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203. |
16 | Chen T, Colver P J, Bon S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization[J]. Advanced Materials, 2007, 19(17): 2286-2289. |
17 | Tauseef-ur-Rehman, Ali H M, Janjua M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
18 | Mukai K, Yamada I. Columbite-type TiO2 as a megative electrode material for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): A3590-A3594. |
19 | 王世霞, 王腾. 二氧化钛高压相变的研究进展[J]. 材料科学与工程学报, 2021, 39(2): 330-336. |
Wang S X, Wang T. Progress on phase transition of titanium dioxide under high pressure conditions[J]. Journal of Materials Science and Engineering, 2021, 39(2):330-336. | |
20 | Tripathi A K, Singh M K, Mathpal M C, et al. Study of structural transformation in TiO2 nanoparticles and its optical properties[J]. Journal of Alloys and Compounds, 2013, 549: 114-120. |
21 | 陈扬, 于洋, 夏咏梅. 二氧化钛光催化材料的制备方法与进展[J]. 世界有色金属, 2019(19): 160-161. |
Chen Y, Yu Y, Xia Y M. Preparation and progress of titanium dioxide photocatalytic materials[J]. World Nonferrous Metals, 2019(19): 160-161. | |
22 | 陈晶晶, 许猛, 徐丽亚, 等. 纳米二氧化钛的制备、改性及光催化研究进展[J]. 浙江化工, 2020, 51(6): 21-24. |
Chen J J, Xu M, Xu L Y, et al. Research progress on preparation, modification and photocatalysis of nano titanium dioxide[J]. Zhejiang Chemical Industry, 2020, 51(6): 21-24. | |
23 | 董俊杰, 黄云超, 向柄全, 等. 二氧化钛纳米管在骨科的研究进展[J]. 生物骨科材料与临床研究, 2018, 15(2): 61-65. |
Dong J J, Huang Y C, Xiang B Q, et al. Research progress of titania nanotubes in the field of orthopaedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2018, 15(2): 61-65. | |
24 | 朱梅英, 崔晓莉. 纳米TiO2在医学领域中的应用研究进展[J]. 复旦学报(医学版), 2005, 32(2): 249-252. |
Zhu M Y, Cui X L. The application and the research progress of TiO2 nanoparticles in mdeicinal area[J]. Journal of Shanghai Medica (University), 2005, 32(2):249-252. | |
25 | 朱林林, 张辉. 纳米二氧化钛的制备及其在纺织领域的应用[J]. 国际纺织导报, 2012, 40(5): 62-64, 66. |
Zhu L L, Zhang H. Preparation of nano-TiO2 and its application in textile industry[J]. Melliand China, 2012, 40(5): 62-64, 66. | |
26 | 常畅. 二氧化钛多孔材料及其性能研究进展[J]. 化工设计通讯, 2019, 45(9): 123-124. |
Chang C. Research progress of porous titanium dioxide materials and their properties[J]. Chemical Engineering Design Communications, 2019, 45(9): 123-124. | |
27 | Li M, Liu J, Shi J. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell[J]. Solar Energy, 2018, 167: 158-164. |
28 | Jia X W, Li Q Y, Ao C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710. |
29 | 张红英,欧阳八生,朱国军.泡沫铝材料的研究与应用[J]. 粉末冶金技术,2021, 39(1):69-75. |
Zhang H Y, Ouyang B S, Zhu G J. Research and application of aluminum foam materials[J]. Powder Metallurgy Technology, 2021, 39(1):69-75. | |
30 | Han X P, Yao B H, Li K Y, et al. Preparation and photocatalytic performances of WO3/TiO2 composite nanofibers[J]. Journal of Chemistry, 2020(7): 1-12. |
31 | Ahonen P P, Tapper U, Kauppinen E I, et al. Aerosol synthesis of Ti-O powders via in-droplet hydrolysis of titanium alkoxide[J]. Materials Science and Engineering: A, 2001, 315(1/2): 113-121. |
32 | Jang H D, Kim S K. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor[J]. Materials Research Bulletin, 2001, 36(3/4): 627-637. |
33 | Xia B, Huang H Z, Xie Y C. Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis[J]. Materials Science and Engineering: B, 1999, 57(2): 150-154. |
34 | Tian C X. Effects of structural factors of hydrated TiO2 on rutile TiO2 pigment preparation via short sulfate process[J]. Scientific Reports, 2020, 10(1): 7999. |
35 | 王秀丽, 高秋明, 张义建, 等. 用溶胶-凝胶法在纳米孔材料VSB-1中制备纳米二氧化钛[J].稀有金属材料与工程, 2008, 37(S2): 415-418. |
Wang X L, Gao Q M, Zhang Y J, et al. Preparation of nanosized titanium oxide in nanoporous material VSB-1 by sol-gel process[J]. Rare Metal Materials and Engineering, 2008, 37(S2): 415-418. | |
36 | Deng Y, Li J H, Nian H E, et al. Design and preparation of shape-stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower-like TiO2 nanostructure for thermal energy storage[J]. Applied Thermal Engineering, 2017, 114: 328-336. |
37 | 赵敬哲, 王子忱, 刘艳华, 等. 液相一步合成金红石型超细TiO2 [J]. 高等学校化学学报, 1999, 20(3): 467-469. |
Zhao J Z, Wang Z C, Liu Y H, et al. Preparation of ultrafine rutile titania crystals by liquid method[J]. Chemical Research in Chinese Universities, 1999, 20(3): 467-469. | |
38 | 范金山. 微乳液法制备TiO2纳米粉体及其光催化性能研究[J]. 人工晶体学报, 2006, 35(2): 347-350. |
Fan J S. Study on micro-emulsion synthesis of TiO2 nanopowders and its photocatalysis property[J]. Journal of Synthetic Crystals, 2006, 35(2): 347-350. | |
39 | 易重庆,赵利启,程米亮,等. 溶胶-凝胶法制备纳米二氧化钛的工艺条件优化[J]. 化工设计通讯, 2020, 46(1): 136-137. |
Yi C Q, Zhao L Q, Cheng M L . et al. Study on optimization of process conditions of preparing mano-titanium dioxide by sol-gel method[J]. Chemical Engineering Design Communications, 2020, 46(1):136-137. | |
40 | 朱地,刘冉冉,李海龙,等. 水热法制备不同晶粒尺寸的纳米二氧化钛[J]. 北京大学学报(自然科学版),2010,46(4):525-530. |
Zhu D, Liu R R, Li H L, et al. Hydrothermal synthesis of titania powder with different particle sizes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(4):525-530. | |
41 | 马鹏举, 闫国田, 钱俊杰, 等. 新型N-TiO2的固相法制备及其光催化性能[J]. 催化学报, 2011, 32(8): 1430-1435. |
Ma P J, Yan G T, Qian J J, et al. Preparation of novel N-TiO2 by a solid-state method and its photocatalytic activity[J]. Chinese Journal of Catalysis, 2011, 32(8): 1430-1435. | |
42 | Chen J R, Qiu F X, Xu W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131-140. |
43 | 常钊, 陈宝明, 罗丹. 相变储能材料研究进展[J]. 煤气与热力, 2021, 41(4): 21-27, 98. |
Chang Z, Chen B M, Luo D. Research progress on phase change energy storage materials[J]. Gas & Heat, 2021, 41(4): 21-27, 98. | |
44 | 李晓辉. 相变储能材料的研究进展[J]. 河北省科学院学报, 2012, 29(2): 58-62. |
Li X H. Research progress in phase change materials[J]. Journal of the Hebei Academy of Sciences, 2012, 29(2): 58-62. | |
45 | Liu C H, Song Y, Xu Z, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068. |
46 | Wu S, Li T X, Tong Z, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019, 31(49): 1905099. |
47 | Jaguemont J, Omar N, van den Bossche P, et al. Phase-change materials (PCM) for automotive applications: a review[J]. Applied Thermal Engineering, 2018, 132: 308-320. |
48 | Liu C H, Ma X T, Du P X, et al. Fabrication of highly efficient thermal energy storage composite from waste polystyrenes[J]. Chemical Engineering Science, 2020, 216: 115477. |
49 | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
Zhou S L, Zhang Z G, Fang X M. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
50 | Asefi G, Ma T, Wang R Z. Parametric investigation of photovoltaic-thermal systems integrated with porous phase change material[J]. Applied Thermal Engineering, 2022, 201: 117727. |
51 | Wu S, Li T X, Wu M Q, et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management[J]. Journal of Materials Chemistry A, 2020, 8(38): 20011-20020. |
52 | B S, Singh L P, Tyagi I, et al. Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage[J]. International Journal of Energy Research, 2020, 44(5): 3854-3864. |
53 | Chen T, Liu C, Mu P, et al. Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage[J]. Chemical Engineering Journal, 2020, 382: 122831. |
54 | Li B M, Shu D, Wang R F, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92. |
55 | Atinafu D G, Yun B Y, Wi S, et al. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities[J]. Environmental Research, 2021, 195: 110853. |
56 | 刘昌会, 黄文博, 顾彦龙, 等. 废弃聚苯乙烯塑料在环境与能源中的高值化应用进展[J]. 化工学报, 2020, 71(7): 2956-2972. |
Liu C H, Huang W B, Gu Y L, et al. Recent advances in high value added reuse of waste polystyrene in environment and energy[J]. CIESC Journal, 2020, 71(7): 2956-2972. | |
57 | Deka P P, Ansu A K, Sharma R K, et al. Development and characterization of form-stable porous TiO2/tetradecanoic acid based composite PCM with long-term stability as solar thermal energy storage material[J]. International Journal of Energy Research, 2020, 44(13): 10044-10057. |
58 | ELIDI M M, Karkri M, Kraiem M. Preparation and effective thermal conductivity of a paraffin/metal foam composite[J]. Journal of Energy Storage, 2021, 33: 102077. |
59 | Qin J W, Chen Y K, Xu C L, et al. Synthesis and thermal properties of 1-octadecanol/nano-TiO2/carbon nanofiber composite phase change materials for thermal energy storage[J]. Materials Chemistry and Physics, 2021, 272: 125041. |
60 | Li C E, Yu H, Song Y, et al. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage[J]. Renewable Energy, 2020, 145: 1465-1473. |
61 | Zhao S Y, Li J H, Wu Y F, et al. Porous titanium dioxide foams: a promising carrier material for medium-and high-temperature thermal energy storage[J]. Energy & Fuels, 2020, 34(7): 8884-8890. |
62 | Deng H, Yang Y M, Tang X H, et al. Phase-change composites composed of silicone rubber and Pa@SiO2@PDA double-shelled microcapsules with low leakage rate and improved mechanical strength[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39394-39403. |
63 | Zhang Z, Zhang Z, Chang T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. |
64 | Cao L, Tang F, Fang G Y. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2014, 123: 183-188. |
65 | Cao L, Tang F, Fang G Y. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings[J]. Energy and Buildings, 2014, 72: 31-37. |
66 | Zhao L, Wang H, Luo J, et al. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials[J]. Solar Energy, 2016, 127: 28-35. |
67 | Chen Y H, Liu Y, Wang Z H. Preparation and characteristics of microencapsulated lauric acid as composite thermal energy storage materials[J]. Materials Science, 2019, 26(1): 88-93. |
68 | 周龙祥, 王保明, 田玉提, 等. 二氧化钛包覆石蜡相变微胶囊的制备及表征[J]. 现代化工, 2019, 39(3): 82-86. |
Zhou L X, Wang B M, Tian Y T, et al. Preparation and characterization of titanium oxide-coated microencapsulated paraffin phase change materials[J]. Modern Chemical Industry, 2019, 39(3): 82-86. | |
69 | Ma X C, Liu Y J, Liu H, et al. Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(17): 15241-15248. |
70 | Latibari T S, Mehrali M, Mehrali M, et al. Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol-gel method[J]. Energy, 2015, 85: 635-644. |
71 | Liu H, Wang X D, Wu D Z. Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4906-4915. |
72 | Jiang B B, Wang X D, Wu D Z. Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: a novel design of applied energy microsystem for bioapplications[J]. Applied Energy, 2017, 201: 20-33. |
73 | Ji W, Cheng X M, Chen S H, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. |
74 | Li J, Li L J, Wang H C, et al. Microencapsulation of molten salt in titanium shell for high-temperature latent functional thermal fluid[J]. Energy Technology, 2020, 8(12): 2000550. |
75 | Zhao A Q, An J L, Yang J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy, 2018, 215: 468-478. |
76 | Pornea A M, Kim H. Design and synthesis of SiO2/TiO2/PDA functionalized phase change microcapsules for efficient solar-driven energy storage[J]. Energy Conversion and Management, 2021, 232: 113801. |
77 | Björkegren S, Nordstierna L, Törncrona A, et al. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions[J]. Journal of Colloid and Interface Science, 2017, 487: 250-257. |
78 | Gonzalez O D, Pochat-Bohatier C, Cambedouzou J, et al. Current trends in Pickering emulsions: particle morphology and applications[J]. Engineering, 2020, 6(4): 468-482. |
79 | Voisin H, Falourd X, Rivard C, et al. Versatile nanocellulose-anatase TiO2 hybrid nanoparticles in Pickering emulsions for the photocatalytic degradation of organic and aqueous dyes[J]. JCIS Open, 2021, 3: 100014. |
80 | Zhou J H, Zhao J J, Cui Y J, et al. Synthesis of bifunctional nanoencapsulated phase change materials with nano-TiO2 modified polyacrylate shell for thermal energy storage and ultraviolet absorption[J]. Polymer International, 2020, 69(2): 140-148. |
81 | Sun N, Xiao Z G. Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage[J]. Energy & Fuels, 2017, 31(9): 10186-10195. |
82 | 邱庆龄. 纳米TiO2改性复合相变微胶囊的制备及热性能研究[J]. 功能材料, 2020, 51(10): 10216-10220. |
Qiu Q L. Preparation and thermal properties of nano-TiO2 modified composite phase change microcapsules[J]. Journal of Functional Materials, 2020, 51(10): 10216-10220. | |
83 | Álvarez-Bermúdez O, Adam-Cervera I, Aguado-Hernándiz A, et al. Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 17956-17966. |
84 | Teng T P, Yu C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1): 611. |
85 | Wang J F, Xie H Q, Guo Z X, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547. |
86 | Fikri M A, Pandey A K, Samykano M, et al. Thermal stability and light transmission capability of nano TiO2 enhanced phase change material as thermal energy storage[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1116(1): 012206. |
87 | Motahar S, Nikkam N, Alemrajabi A A, et al. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles[J]. International Communications in Heat and Mass Transfer, 2014, 59: 68-74. |
88 | Prabhu B, Valan A. Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems[J]. Renewable Energy, 2020, 152: 358-367. |
89 | Motahar S, Alemrajabi A A, Khodabandeh R. Experimental study on solidification process of a phase change material containing TiO2 nanoparticles for thermal energy storage[J]. Energy Conversion and Management, 2017, 138: 162-170. |
90 | Venkitaraj K P, Suresh S. Effects of Al2O3, CuO and TiO2 nanoparticles son thermal, phase transition and crystallization properties of solid-solid phase change material [J]. Mechanics of Materials, 2019, 128: 64-88. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[8] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[9] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[13] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[14] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||