化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3524-3537.doi: 10.11949/0438-1157.20210046

• 综述与专论 • 上一篇    下一篇

热电池电解质与隔膜材料研究进展

刘一铮1(),石斌2,冉岭2,唐军2,谭思平2,刘江涛2,张鹏1(),赵金保1,3()   

  1. 1.厦门大学能源学院,福建 厦门 361102
    2.特种化学电源国家重点实验室,贵州 遵义 563003
    3.厦门大学化学化工学院,福建 厦门 361005
  • 收稿日期:2021-01-11 修回日期:2021-05-10 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 张鹏,赵金保 E-mail:1414000460@qq.com;pengzhang@xmu.edu.cn;jbzhao@xmu.edu.cn
  • 作者简介:刘一铮(1994—),男,硕士研究生,1414000460@qq.com
  • 基金资助:
    航天江南技术基础研究项目(FSHT[2020]152)

Research progress of molten salt electrolyte and separator materials for thermal batteries

LIU Yizheng1(),SHI Bin2,RAN Ling2,TANG Jun2,TAN Siping2,LIU Jiangtao2,ZHANG Peng1(),ZHAO Jinbao1,3()   

  1. 1.College of Energy, Xiamen University, Xiamen 361102, Fujian, China
    2.State Key Laboratory of Advanced Chemical Power Sources, Zunyi 563003, Guizhou, China
    3.College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2021-01-11 Revised:2021-05-10 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHANG Peng,ZHAO Jinbao E-mail:1414000460@qq.com;pengzhang@xmu.edu.cn;jbzhao@xmu.edu.cn

摘要:

作为一种在使用时使电解质熔融而激活工作的储备电池,热电池的熔融盐电解质是决定其性能的关键要素之一。近年来,通过组分调控电解质新体系来降低熔点和提高离子电导率成为研究热点,利用基于热力学理论和热力学数据库的相图计算(CALPHAD)进行三元甚至四元熔融盐体系的筛选,为得到性能优异的熔融盐电解质提供便利,从而达到提升热电池性能特别是延长电池寿命的目的。熔融盐功能组分如黏结剂MgO等的加入可以减少电解质熔融盐泄漏,其用量和结构的优化可以提高熔融盐与电解液的亲和性以及减小电池内阻,进而提高热电池电化学性能;无机纤维隔膜的引入可以更大程度地减小或者消除无离子传导MgO的使用,同时无机纤维隔膜的使用提高了电池的安全可靠性,也为热电池的小型化提供了指导方向。

关键词: 电化学, 电解质, 热电池, 熔融盐, 无机纤维隔膜, 黏结剂, 复合材料

Abstract:

As a reserve battery that heats the electrolyte to melt when applied to use, thermal batteries are mostly used in military and aerospace fields. At room temperature, its electrolyte is in a solid state without ionic conduction, so that the battery does not self-discharge, which is a necessary condition for its long-term storage. The molten salt electrolyte of the thermal battery is one of the key elements that determine its performance. In recent years, the application of a new system of component-controlled molten salt electrolyte to reduce the melting point and increase the ionic conductivity has become one of the research hotspots such as adding low-melting component salts to lower the melting point of the molten salt system, or using the entropy increase principle to optimize the performance of molten salt by adding new components. Combining with theoretical calculations and simulations, the ternary or even quaternary molten salt is developed to improve thermal battery performance, especially to extend battery life. In order to make the use of thermal batteries more common, the molten salt of the low melting point system is utilized. The introduction of some precious metal cations and the use of nitrates can reduce the melting temperature of the molten salt system to below 300℃, which is the standard for its common use. The addition of functional components such as MgO binder can reduce the probability of electrolyte molten salt leakage, but its dosage and structure need to be optimized to reduce the internal resistance of the battery and improve the retention of molten salt, which can improve the electrochemical performance of thermal batteries. Further, the introduction of inorganic fiber separators can reduce or eliminate the use of MgO binder to a greater extent and improve the safety and reliability of the battery, which also provides guidance for miniaturization of thermal battery.

Key words: electrochemistry, electrolytes, thermal battery, molten salt, inorganic fiber separators, binder, composites

中图分类号: 

  • TQ 152
1 Cho J H, Im C N, Choi C H, et al. Thermal stability characteristics of high-power, large-capacity, reserve thermal batteries with pure Li and Li(Si) anodes[J]. Electrochimica Acta, 2020, 353: 136612.
2 王传东, 刘勇, 石治国. 军用电池技术现状[J]. 电源技术, 2016, 40(10): 2098-2099.
Wang C D, Liu Y, Shi Z G. Advance of battery technologies for missile applications[J]. Chinese Journal of Power Sources, 2016, 40(10): 2098-2099.
3 Guidotti R A. Thermal batteries: a technology review and future directions[EB/OL]. 1995. [2021-01-11]. .
4 Guidotti R A, Masset P. Thermally activated (“thermal”) battery technology (Ⅰ): An overview[J]. Journal of Power Sources, 2006, 161(2): 1443-1449.
5 Kim I Y, Woo S P, Ko J, et al. Binder-free cathode for thermal batteries fabricated using FeS2 treated metal foam[J]. Frontiers in Chemistry, 2019, 7: 904.
6 Kaufmann S, Chagnon G. Thermal battery for aircraft emergency power[C]//IEEE 35th International Power Sources Symposium. Cherry Hill, NJ, USA, 1992: 227-230.
7 Dagarin B P, Taenaka R K, Stofel E J. Galileo probe battery system[J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(6): 6-13.
8 Jiang W, Liu Z H, Kong Q S, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Solid State Ionics, 2013, 232: 44-48.
9 Butler P, Wagner C, Guidotti R, et al. Long-life, multi-tap thermal battery development[J]. Journal of Power Sources, 2004, 136(2): 240-245.
10 邓宏彬, 王超, 赵娜. 中小型智能弹药舵机系统设计与应用技术[M]. 北京: 国防工业出版社, 2016: 156.
Deng H B, Wang C, Zhao N. Design of Small Intelligent Ammunition Sheering Gear System [M]. Beijing: National Defense Industry Press, 2016: 156.
11 Masset P J, Guidotti R A. Thermal activated (“thermal”) battery technology (Ⅲa): FeS2 cathode material[J]. Journal of Power Sources, 2008, 177(2): 595-609.
12 Evangelista M G, José M F, Fernande s M de S R. Iron disulfide synthesis for thermal batteries applications[J]. Journal of Aerospace Technology and Management, 2020, (1): 50-53.
13 Yang Z T, Liu X J, Feng X L, et al. Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery[J]. Journal of Applied Electrochemistry, 2014, 44(10): 1075-1080.
14 Choi Y, Ahn T Y, Ha S H, et al. Hydrothermally synthesized homogeneous Ni-Mo-S structures on Ni-foam cathodes for thermal batteries[J]. Chemical Communications (Cambridge, England), 2019, 55(51): 7300-7302.
15 Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.
16 Xie S, Deng Y F, Mei J, et al. Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability[J]. Electrochimica Acta, 2017, 231: 287-293.
17 Xie Y L, Liu Z J, Ning H L, et al. Suppressing self-discharge of Li-B/CoS2 thermal batteries by using a carbon-coated CoS2 cathode[J]. RSC Advances, 2018, 8(13): 7173-7178.
18 Guidotti R A, Masset P J. Thermally activated (“thermal”) battery technology (Ⅳ): Anode materials[J]. Journal of Power Sources, 2008, 183(1): 388-398.
19 Cao Y, Li J, Yang P, et al. Electrochemical performance of NiCl2 with Br-free molten salt electrolyte in high power thermal batteries[J]. Science China Technological Sciences, 2021, 64(1): 91-97.
20 张合, 李豪杰. 引信机构学[M]. 北京: 北京理工大学出版社, 2014: 189.
Zhang H, Li H J. Fuze Mechanism[M]. Beijing: Beijing Insititute of Technology Press, 2014: 189.
21 Guidotti R. Development history of Fe/KClO4 heat powders at Sandia and related aging issues for thermal batteries[R]. Office of Scientific and Technical Information (OSTI), 2001.
22 Guidotti R A, Odinek J, Reinhardt F W. Characterization of Fe/KClO4 heat powders and pellets[J]. Journal of Energetic Materials, 2006, 24(4): 271-305.
23 张一弛. BN纤维复合隔膜的制备及其在Li-FeS2/CoS2热电池中的性能研究[D]. 武汉: 武汉理工大学, 2016.
Zhang Y C. Preparation of BN fiber separator and application of bn fiber separator in Li-FeS2/CoS2 thermal battery[D]. Wuhan: WuhanUniversity of Technology, 2016.
24 Masset P J, Guidotti R A. Thermal activated (“thermal”) battery technology (Ⅲb): Sulfur and oxide-based cathode materials[J]. Journal of Power Sources, 2008, 178(1): 456-466.
25 Masset P, Schoeffert S, Poinso J Y, et al. Retained molten salt electrolytes in thermal batteries[J]. Journal of Power Sources, 2005, 139(1/2): 356-365.
26 Masset P, Guidotti R A. Thermal activated (thermal) battery technology (Ⅱ): Molten salt electrolytes[J]. Journal of Power Sources, 2007, 164(1): 397-414.
27 Chase M W, Curnutt J L, McDonald R A, et al. JANAF thermochemical tables, 1978 supplement[J]. Journal of Physical and Chemical Reference Data, 1978, 7(3): 793-940.
28 van Artsdalen E R, Yaffe I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127.
29 Janz G J, Tomkins R P T, Allen C B, et al. Molten salts: volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1975, 4(4): 871-1178.
30 何德军, 刘鸿雁. 导弹主电源技术的发展[J]. 兵器材料科学与工程, 2009, 32(1): 93-96.
He D J, Liu H Y. Development of primary battery for missile[J]. Ordnance Material Science and Engineering, 2009, 32(1): 93-96.
31 Masset P J. Thermal stability of FeS2 cathode material in “thermal” batteries: effect of dissolved oxides in molten salt electrolytes[J]. Zeitschrift Für Naturforschung A, 2008, 63(9): 596-602.
32 Sangster J, Pelton A D. Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions[J]. Journal of Physical and Chemical Reference Data, 1987, 16(3): 509-561.
33 Masset P, Henry A, Poinso J Y, et al. Ionic conductivity measurements of molten iodide-based electrolytes[J]. Journal of Power Sources, 2006, 160(1): 752-757.
34 Selman J R, DeNuccio D K, Sy C J, et al. EMF studies of lithium-rich lithium-aluminum alloys for high-energy secondary batteries[J]. Journal of the Electrochemical Society, 1977, 124(8): 1160-1164.
35 Fujiwara S, Kato F, Watanabe S, et al. New iodide-based molten salt systems for high temperature molten salt batteries[J]. Journal of Power Sources, 2009, 194(2): 1180-1183.
36 Johnson C E, Hathaway E, Crouthamel C E. Lithium hydride systems. Solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium fluoride system[J]. Journal of Chemical & Engineering Data, 1966, 11(3): 372-374.
37 Johnson C E, Foster M S. Phase equilibrium studies of lithium halide-containing electrolytes[J]. Journal of the Electrochemical Society, 1969, 116(11): 1612.
38 Masset P. Iodide-based electrolytes: a promising alternative for thermal batteries[J]. Journal of Power Sources, 2006, 160(1): 688-697.
39 Masset P, Schoeffert S, Poinso J Y, et al. LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A405.
40 赵亚旭, 白鑫涛, 邢永慧, 等. LiF-LiCl-LiBr-KCl电解质在长工作时间热电池中的应用研究[J]. 电源技术, 2018, 42(7): 1040-1041, 1071.
Zhao Y X, Bai X T, Xing Y H, et al. Application of LiF-LiCl-LiBr-KCl electrolyte in long working time thermal batteries[J]. Chinese Journal of Power Sources, 2018, 42(7): 1040-1041, 1071.
41 Yazdani A, Sanghadasa M, Botte G G. Ionic conductivity and thermal stability of lithium salt / potassium bifluoride electrolytes for thermal batteries[J]. Journal of Power Sources, 2020, 453: 227854.
42 Fujiwara S, Inaba M, Tasaka A. New molten salt systems for high-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems[J]. Journal of Power Sources, 2010, 195(22): 7691-7700.
43 Guidotti R A, Reinhardt F W, Odinek J. Overview of high-temperature batteries for geothermal and oil/gas borehole power sources[J]. Journal of Power Sources, 2004, 136(2): 257-262.
44 Janz G J, Tomkins R P T, Allen C B, et al. Molten salts: volume 4, Part 3, bromides and mixtures; iodides and mixtures—electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1977, 6(2): 409-596.
45 Cairns E J, Dunning J S. High-temperature batteries[J]. Progress in High Temperature Physics and Chemistry, 1976, 5: 63-124.
46 Siegler T D, Reimnitz L C, Suri M, et al. Deliquescent chromism of nickel(Ⅱ) iodide thin films[J]. Langmuir, 2019, 35(6): 2146-2152.
47 Rudo K, Hartwig P, Weppner W. Ionic conductivities and phase equilibria of the lithium iodide hydrates[J]. Pascal and Francis Bibliographic Databases, 1980, 17(4): 420-429.
48 Melnichak M E, Kleppa O J. Enthalpies of mixing in binary liquid alkali iodide mixtures[J]. The Journal of Chemical Physics, 1970, 52(4): 1790-1794.
49 王传东. 热电池发展综述[J]. 电源技术, 2013, 37(11): 2077-2079.
Wang C D. Development of thermal battery[J]. Chinese Journal of Power Sources, 2013, 37(11): 2077-2079.
50 李彦, 余杨敏, 李鹏, 等. LiNO3-KNO3二元混合硝酸盐热稳定性分析[J]. 上海电力学院学报, 2018, 34(1): 37-40.
Li Y, Yu Y M, Li P, et al. Thermal stability analysis of LiNO3-KNO3 binary mixed nitrates[J]. Journal of Shanghai University of Electric Power, 2018, 34(1): 37-40.
51 Mantha D, Wang T, Reddy R G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3-NaNO2 quaternary system[J]. Solar Energy Materials and Solar Cells, 2013, 118: 18-21.
52 Zhang Y Y, Zhao Y H, Niu Y Q, et al. Halide and nitrate electrolytes of thermal batteries[J]. Journal of Energy Engineering, 2021, 147(3): 03121002.
53 Niu Y Q, Wu Z, Du J L, et al. Discharge behavior of Li-Mg-B alloy/MnO2 couples with LiNO3-KNO3-Mg(OH)NO3 eutectic electrolyte[J]. Electrochimica Acta, 2014, 115: 607-611.
54 Niu Y Q, Wu Z, Du J L, et al. Characterization of Li-Mg-B alloy/LiNO3-KNO3-KNO2-Ca(NO3)2/MnO2 system for potential use as geothermal and oil/gas borehole battery[J]. Solid State Ionics, 2014, 255: 80-83.
55 Guidotti R A, Reinhardt F W. Characterization of electrolyte-binder mixes for use in thermal batteries[J]. Battery Development Division Sandia National Laboratories, 1991.
56 Inada T, Takada K, Kajiyama A, et al. Silicone as a binder in composite electrolytes[J]. Journal of Power Sources, 2003, 119/120/121: 948-950.
57 Mathers J P, Boquist C W, Olszanski T W. Powder electrode separators for high temperature lithium‐aluminum/iron sulfide batteries[J]. Journal of The Electrochemical Society, 1978, 125(12): 1913-1918.
58 Guidotti R A, Reinhardt W. Characterization of MgO powders for use in thermal batteries[R]. Office of Scientific and Technical Information (OSTI), 1996.
59 陈斐, 张一弛, 黄梅, 等. 一种含有空心氧化镁粉的热电池电解质的制备方法: 105789653B[P]. 2019-01-29.
Chen F, Zhang Y C, Huang M, et al. Preparation method of thermal battery electrolyte containing hollow magnesia powder: 105789653B[P]. 2019-01-29.
60 杨潇薇, 宋学兵, 兰伟, 等. 锂系热电池中电解质黏合剂MgO的优选[J]. 电源技术, 2017, 41(12): 1753-1756.
Yang X W, Song X B, Lan W, et al. Choice of MgO powders for immobilizing electrolyte in lithium-thermal battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1753-1756.
61 Zhang P, Liu J S, Yang Z T, et al. Using MgO fibers to immobilize molten electrolyte in thermal batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1355-1360.
62 Zhang P, Liu J S, Yang Z T, et al. Synthesis of porous magnesia fibers with enhanced performance as a binder for molten electrolyte[J]. Electrochimica Acta, 2017, 230: 358-364.
63 Liu X B, Liu J S, Liu X J, et al. Porous magnesia fibers as an immobilizing agent for molten salt in thermal batteries[J]. Journal of the Electrochemical Society, 2016, 163(5): A617-A623.
64 Zeng M S, Liu J S, Yang Z T, et al. Ion transport in MgO porous fibers retained molten salt electrolytes for thermal batteries[J]. Journal of the Electrochemical Society, 2018, 165(5): A736-A740.
65 Huang X R, Liu J S, Zeng M S, et al. Effects of different MgO fiber structures on adhesive capacity and ionic migration of Li-Si/LiCl-KCl/FeS2 thermal batteries[J]. Electrochimica Acta, 2019, 324: 134918.
66 Zhang L L, Han P D, Zhang C L, et al. Density functional theory study on the stability and electronic properties of MgF2 surfaces[J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1609-1614.
67 牛怀成, 李利春, 李瑛, 等. 高比表面积氟化镁的合成及其在催化中的应用研究进展[J]. 化工进展, 2012, 31(7): 1484-1492.
Niu H C, Li L C, Li Y, et al. Progress of preparation and catalytic application of magnesium fluoride with high surface area[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1484-1492.
68 Czajka B, Zieliński M, Wojciechowska M, et al. Modification of MgO as an immobilizing agent for molten electrolyte[J]. Journal of Solid State Electrochemistry, 2014, 18(8): 2351-2358.
69 Kang S H, Chae S H, Cheong H W, et al. Thermal batteries with ceramic felt separators (Ⅱ): Ionic conductivity, electrochemical and mechanical properties[J]. Ceramics International, 2017, 43(5): 4023-4028.
70 沈冬艳, 杨少华, 骆柬氽, 等. 热电池MgO改性石棉纤维隔膜的研究[J]. 功能材料, 2015, 46(22): 22054-22057.
Shen D Y, Yang S H, Luo J T, et al. Study on MgO modified asbestos paper separator for thermal batteries[J]. Journal of Functional Materials, 2015, 46(22): 22054-22057.
71 Swaroop R B, Battles J E. Development of BN felt separator for Li-Al/MSx battery[J]. Journal of the Electrochemical Society, 1981, 128(9): 1873-1877.
72 唐杰, 张铭霞, 栾强, 等. 热电池用氮化硼纤维基复合隔膜的研制及性能研究[J]. 现代技术陶瓷, 2017, 38(3): 197-203.
Tang J, Zhang M X, Luan Q, et al. Fabrication and properties of boron nitride fiber based composite separator for thermal battery[J]. Advanced Ceramics, 2017, 38(3): 197-203.
73 Mathers J P, Olszanski T W, Battles J E. Evaluation of porous paper and felt ceramics for electrode separators in high temperature Li - Al / LiCl - KCl/FeSx cells[J]. Journal of the Electrochemical Society, 1977, 124(8): 1149-1154.
74 Chae S H, Kang S H, Cheong H W, et al. Thermal batteries with ceramic felt separators (Ⅰ): Wetting, loading behavior and chemical stability[J]. Ceramics International, 2017, 43(5): 4015-4022.
75 张鹏, 赵金保, 刘一铮. 一种熔融盐复合电解质隔膜、制备方法及应用: 110690397A[P]. 2020-01-14.
Zhang P, Zhao J B, Liu Y Z. Molten salt composite electrolyte diaphragm and preparation method and application thereof: 110690397A[P]. 2020-01-14.
76 Feih S, Manatpon K, Mathys Z, et al. Strength degradation of glass fibers at high temperatures[J]. Journal of Materials Science, 2009, 44(2): 392-400.
77 Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J]. Chemical Physics Letters, 2000, 329(3/4): 323-328.
78 Gulden T D. Mechanical properties of polycrystalline β-sic[J]. Journal of the American Ceramic Society, 1969, 52(11): 585-590.
79 Lu P, Huang Q, Mukherjee A, et al. Effects of polymer matrices to the formation of silicon carbide (SiC) nanoporous fibers and nanowires under carbothermal reduction[J]. J. Mater. Chem., 2011, 21(4): 1005-1012.
80 Kern E L, Hamill D W, Deem H W, et al. Thermal properties of β-silicon carbide from 20 to 2000℃[M]//Silicon Carbide–1968. Amsterdam: Elsevier, 1969: S25-S32.
81 Wang Z B, Iizuka T, Kozako M, et al. Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength (Ⅰ):Sample preparations and thermal conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 1963-1972.
82 Whittemore O J, Ault N N. Thermal expansion of various ceramic materials to 1500℃[J]. Journal of the American Ceramic Society, 1956, 39(12): 443-444.
83 Gielisse P J, Mitra S S, Plendl J N, et al. Lattice infrared spectra of boron nitride and boron monophosphide[J]. Physical Review, 1967, 155(3): 1039.
84 Slack G A, Bartram S F. Thermal expansion of some diamondlike crystals[J]. Journal of Applied Physics, 1975, 46(1): 89-98.
85 Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochimica Acta, 2005, 430(1/2): 155-165.
[1] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[2] 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
[3] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[4] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[5] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[6] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[7] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[8] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[9] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[10] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[11] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[12] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[13] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[14] 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454.
[15] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!