化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2530-2546.DOI: 10.11949/0438-1157.20200338
胡涛1,2(),张熊1,2(),安亚斌1,李晨1,马衍伟1,2
收稿日期:
2020-03-30
修回日期:
2020-04-13
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
张熊
作者简介:
胡涛(1996—),男,博士研究生,基金资助:
Tao HU1,2(),Xiong ZHANG1,2(),Yabin AN1,Chen LI1,Yanwei MA1,2
Received:
2020-03-30
Revised:
2020-04-13
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xiong ZHANG
摘要:
锂离子电容器是一种采用电容型正极材料、电池型负极材料进行组装的储能器件,结合了锂离子电池与超级电容器两者的优点,兼具高能量密度、高功率密度和长循环寿命。但是由于锂离子电容器还存在正负极动力学过程以及容量不匹配的问题,大大影响了锂离子电容器的电化学性能。通常锂离子电容器的功率密度取决于负极材料,而能量密度取决于正极材料,因此为提高锂离子电容器的能量密度,还需发展具有高比容量和高导电性的正极材料。目前,碳材料因具有低成本、来源广泛、高比表面积和丰富的孔道结构等特点,是一种极具应用潜力的电极材料。综述并分析了各种碳材料(包括活性炭、模板炭、石墨烯和生物炭等)作为锂离子电容器正极材料的电化学性能与优缺点,最后对锂离子电容器正极材料的研究提出了建议与展望。
中图分类号:
胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546.
Tao HU, Xiong ZHANG, Yabin AN, Chen LI, Yanwei MA. Research progress of carbon cathode materials for Li-ion capacitors[J]. CIESC Journal, 2020, 71(6): 2530-2546.
1 | Suberu M Y, Mustafa M W, Bashir N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 499-514. |
2 | Kang J N, Wei Y M, Liu L C, et al. Energy systems for climate change mitigation: a systematic review[J]. Applied Energy, 2020, 263: 114602. |
3 | Lian J J, Zhang Y S, Ma C, et al. A review on recent sizing methodologies of hybrid renewable energy systems[J]. Energy Conversion and Management, 2019, 199: 112027. |
4 | Nazir M S, Ali N, Bilal M, et al. Potential environmental impacts of wind energy development: a global perspective[J]. Current Opinion in Environmental Science & Health, 2020, 13: 85-90. |
5 | Zhang Y H, Ren J, Pu Y R, et al. Solar energy potential assessment: a framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable Energy, 2020, 149: 577-586. |
6 | Mejia C, Kajikawa Y Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents[J]. Applied Energy, 2020, 263: 114625. |
7 | 宋维力, 范丽珍. 超级电容器研究进展: 从电极材料到储能器件[J]. 储能科学与技术, 2016, 5(6): 788-799. |
Song W L, Fan L Z. Advances in supercapacitors: from electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5(6): 788-799. | |
8 | 孙现众, 张熊, 王凯, 等. 高能量密度的锂离子混合型电容器[J]. 电化学, 2017, 23: 586-603. |
Sun X Z, Zhang X, Wang K, et al. Lithium ion hybrid capacitor with high energy density[J]. Journal of Electrochemistry, 2017, 23: 586-603. | |
9 | 李章溢, 房凯, 刘强, 等. 储能技术在电力调峰领域中的应用[J]. 电器与能效管理技术, 2019, 10: 69-73. |
Li Z Y, Fang K, Liu Q, et al. Application of energy storage technology in power peak regulation[J]. Electrical & Energy Management Technology, 2019, 10: 69-73. | |
10 | 姚煜, 张楙慧. 高倍率锂离子电池材料研究进展[J]. 电源技术, 2019, 43(3): 511-514. |
Yao Y, Zhang M H. Research progress of materials for high power Li-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(3): 511-514. | |
11 | Zhao B Z, Ran R, Liu M L, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives[J]. Materials Science and Engineering: R: Reports, 2015, 98: 1-71. |
12 | Wang Y X, Liu B, Li Q Y, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review[J]. Journal of Power Sources, 2015, 286: 330-345. |
13 | Liu B H, Jia Y K, Yuan C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. |
14 | Liu Q, Du C, Shen B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6: 88683-88700. |
15 | 肖谧, 宿玉鹏, 杜伯学. 超级电容器研究进展[J]. 电子元件与材料, 2019, 38(9): 1-12. |
Xiao M, Su Y P, Du B X. Research progress of supercapacitors[J]. Electronic Components and Materials, 2019, 38(9): 1-12. | |
16 | 黄晓斌, 张熊, 韦统振, 等. 超级电容器的发展及应用现状[J]. 电工电能新技术, 2017, 36(11): 63-70. |
Huang X B, Zhang X, Wei T Z, et al. Development and application of super capacitor[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(11): 63-70. | |
17 | Afif A, Rahaman S M, Azad A T, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage—a review[J]. Journal of Energy Storage, 2019, 25: 100852. |
18 | Siwatch P, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
19 | Smith P H, Tran T N, Jiang T L, et al. Lithium-ion capacitors: electrochemical performance and thermal behavior[J]. Journal of Power Sources, 2013, 243: 982-992. |
20 | 叶成玉, 颜冬, 陆安慧, 等. 有机介质体系锂离子电容器[J]. 化工进展, 2019, 38(3): 1283-1296. |
Ye C Y, Yan D, Lu A H, et al. Lithium ion capacitors with organic electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1283-1296. | |
21 | 巩瑞奇, 金黎明, 郑俊生, 等. 锂离子电容器: 理论、结构设计与应用[J]. 电子元件与材料, 2018, 37(10): 8-12. |
Gong R Q, Jin L M, Zheng J S, et al. Lithium ion capacitor: theory, structure and applications[J]. Electronic Components and Materials, 2018, 37(10): 8-12. | |
22 | Zhang X, Wang L, Liu W J, et al. Recent advances in MXenes for lithium-ion capacitors[J]. ACS Omega, 2020, 5: 75-82. |
23 | Amatucci G G, Badway F, Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148: 930-939. |
24 | Yu X L, Deng J J, Zhan C Z, et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes[J]. Electrochimica Acta, 2017, 228: 76-81. |
25 | Seman R N A R, Azam M A, Mohamad A A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 644-659. |
26 | Pasquier A D, Plitz I, Gural J, et al. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes[J]. Journal of Power Sources, 2003, 113: 62-71. |
27 | Luo J Y, Liu J L, He P, et al. A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte[J]. Electrochimica Acta, 2008, 53(28): 8128-8133. |
28 | Akio H. Development and applications of lithium ion capacitors[J]. Carbon, 2013, 57: 539. |
29 | Xu X N, Niu F E, Zhang D P, et al. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors[J]. Journal of Power Sources, 2018, 384: 240-248. |
30 | 李新. 钛酸锂基锂离子电容器电极材料的制备与性能优化[D]. 沈阳: 沈阳师范大学, 2019. |
Li X. Preparation and property optimization of electrode materials for lithium titanite-based lithium ion capacitors[D]. Shenyang: Shenyang Normal University, 2019. | |
31 | Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon, 2018, 140: 296-305. |
32 | Li C, Zhang X, Wang K, et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode[J]. Carbon, 2018, 140: 237-248. |
33 | Li N W, Du X, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465. |
34 | Ma H, Geng H, Yao B, et al. Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability[J]. ACS Nano, 2019, 13: 9161-9170. |
35 | Li C, Zhang X, Wang K, et al. High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity[J]. Journal of Power Sources, 2018, 400: 468-477. |
36 | Li G, Yang Z, Yin H, et al. Non-aqueous dual-carbon lithium-ion capacitors: a review[J]. Journal of Materials Chemistry A, 2019, 7: 15541-15563. |
37 | Zhang S J, Li C, Zhang X, et al. High-performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials & Interfaces, 2017, 9: 17136-17144. |
38 | 刘丽莹. 有机系高比能量超级电容器的研究[D]. 长春: 吉林大学, 2019. |
Liu L Y. The study of supercapacitor with high specific energy in organic system[D]. Changchun: Jilin University, 2019. | |
39 | Eguchi T, Tashima D, Fukuma M, et al. Activated carbon derived from Japanese distilled liquor waste: application as the electrode active material of electric double-layer capacitors[J]. Journal of Cleaner Production, 2020, 259: 120822. |
40 | Sivakkumar S R, Pandolfo A G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65: 280-287. |
41 | Zhang J, Liu X F, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142. |
42 | Gómez-Cámer J L, Arnaiz M, Rojo T, et al. Novel lithium-ion capacitor based on tin phosphide and olive pit derived activated carbon[J]. Journal of Power Sources, 2019, 434: 226695. |
43 | Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications, 2015, 6: 8503. |
44 | Li W, Chen D, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9: 569-573. |
45 | Liu C H, Koyyalamudi B B, Li L, et al. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors[J]. Carbon, 2016, 109: 163-172. |
46 | Zhou X Y, Geng Z, Li B, et al. Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113398. |
47 | Ma Y, Chang H, Zhang M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27: 5296-5308. |
48 | Tie D, Huang S, Wang J, et al. Hybrid energy storage devices: advanced electrode materials and matching principles[J]. Energy Storage Materials, 2019, 21: 22-40. |
49 | 曲文慧. 高比能量锂离子电容器的构筑及其电化学性能研究[D]. 大连: 大连理工大学, 2016. |
Qu W H. Construction of lithium ion capacitor with high specific energy density and its electrochemical performance[D]. Dalian: Dalian University of Technology, 2016. | |
50 | 张进. 高比能锂离子电容器的设计与电化学性能研究[D]. 天津: 天津工业大学, 2016. |
Zhang J. Design and electrochemical performance of high specific energy lithium-ion capacitors[D]. Tianjin: Tiangong University, 2016. | |
51 | Aref A R, Chen S W, Rajagopalan R, et al. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors[J]. Carbon, 2019, 152: 89-97. |
52 | Berhaut C L, Lemordant, Porion P, et al. Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances[J]. RSC Advances, 2019, 9(8): 4599-4608. |
53 | Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
54 |
Thiruppathi A R, Sidhureddy B, Salyerda M, et al. Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage[J]. Journal of Electroanalytical Chemistry, 2020, DOI: 10.1016/j.jelechem.2020.113911.
DOI URL |
55 | Zhao X R, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 11275-11283. |
56 | Korkmaz S, Kariper İ A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications[J]. Journal of Energy Storage, 2020, 27: 101038. |
57 | 方陵生在. 神奇材料石墨烯——2010年度诺贝尔物理学奖得主安德烈·盖姆访谈录[J]. 世界科学, 2010, 11: 11-12. |
Fang L S Z. Amazing material graphene: interview with Andre Geim, 2010 Nobel Prize winner in Physics[J]. World Science, 2010, 11: 11-12. | |
58 | Rao C N, Sood A K, Subrahmanyam K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48: 7752-7777. |
59 | Li C, Zhang X, Sun C K, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics, 2019, 52: 143001. |
60 | Ji W W, Liu Y J, Shan Z Q, et al. Boron doped graphene cathode for capacitor via a new one-step method[J]. Ceramics International, 2019, 45(6): 7095-7101. |
61 | 顾晓瑜, 洪晔, 艾果, 等. 高比能高功率全石墨烯锂离子电容器[J]. 化学学报, 2018, 76(8): 644-648. |
Gu X Y, Hong Y, Ai G, et al. All graphene lithium ion capacitor with high-energy-power density performance[J]. Acta Chimica Sinica, 2018, 76(8): 644-648. | |
62 | Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417. |
63 | Stoller M D, Murali S, Quarles N, et al. Activated graphene as a cathode material for Li-ion hybrid supercapacitors[J]. Physical Chemistry Chemical Physics, 2012, 14: 3388-3391. |
64 | Ajuria J, Arnaiz M, Botas C, et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities[J]. Journal of Power Sources, 2017, 363: 422-427. |
65 | Dsoke S, Fuchs B, Gucciardi E, et al. The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12[J]. Journal of Power Sources, 2015, 282: 385-393. |
66 | Raccichini R, Varzi A, Wei D, et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials, 2017, 29: 1-33. |
67 | Zong J, Ni W, Xu H, et al. High tap-density graphene cathode material for lithium-ion capacitors via a mass-scalable synthesis method[J]. Chemical Engineering Journal, 2019, 360: 1233-1240. |
68 | Jeong J H, Lee G W, Kim Y H, et al. A holey graphene-based hybrid supercapacitor[J]. Chemical Engineering Journal, 2019, 378: 122126. |
69 | Li N W, Du X Y, Shi J L, et al. Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J]. Electrochimica Acta, 2018, 281: 459-465. |
70 | Li X, Tang Y, Song J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129: 236-244. |
71 | Li X, Tang Y, Song J H, et al. Self-supporting lithium titanate nanorod/carbon nanotube/reduced graphene oxide flexible electrode for high performance hybrid lithium-ion capacitor[J]. Journal of Alloys and Compounds, 2019, 790: 1157-1166. |
72 | Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802. |
73 | Natarajan S, Lee Y, Aravindan V. Biomass-derived carbon materials as prospective electrodes for high-energy lithium- and sodium-ion capacitors[J]. Chemistry—an Asian Journal, 2019, 14: 936-951. |
74 | Kumar A, Joseph S, Tsechansky L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018, 626: 953-961. |
75 | Ania C O, Khomenko V, Raymund-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Angewandte Chemie-International Edition, 2007, 17: 1828-1836. |
76 | Wu J, Zhang D, Wang Y, et al. Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction[J]. Journal of Power Sources, 2013, 227: 185-190. |
77 | Lu Q, Lu B, Chen M F, et al. Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor[J]. Journal of Power Sources, 2018, 398: 128-136. |
78 | Lu B, Ma B, Yu R, et al. Photovoltaic monocrystalline silicon waste‐derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithium-ion batteries[J]. Chemistry Select, 2017, 2: 3479. |
79 | Wang P, Zhang G, Li M Y, et al. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors[J]. Chemical Engineering Journal, 2019, 375: 122020. |
80 | Wang P, Ye H, Yin Y X, et al. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon[J]. Advanced Materials, 2018, 31: 1805134. |
81 | Zhu G Y, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale, 2017, 9: 1237-1243. |
82 | Zhu G Y, Chen T, Wang L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials, 2018, 14: 246-252. |
83 | Yang Z W, Guo H J, Li X H, et al. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor[J]. Journal of Power Sources, 2016, 329: 339-346. |
84 | Kumagai S, Abe Y, Saito T, et al. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation[J]. Journal of Power Sources, 2019, 437: 226924. |
85 | Babu B, Lashmi P G, Shaijumon M M. Li-ion capacitor based on activated rice husk derived porous carbon with improved electrochemical performance[J]. Electrochimica Acta, 2016, 211: 289-296. |
86 | Jain A, Jayaraman S, Ulaganathan M, et al. Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors[J]. Electrochimica Acta, 2017, 228: 131-138. |
87 | Gokhale R, Aravindan V, Yadav P, et al. Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application[J]. Carbon, 2014, 80: 462-471. |
88 | Li B, Dai F, Xiao Q, et al. Activated carbon from biomass transfer for high‐energy density lithium‐ion supercapacitors[J]. Advanced Energy Materials, 2016, 6: 1600802. |
89 | Zhao X, Johnston C, Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry, 2009, 19: 8755-8760. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[5] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[6] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[9] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[10] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[11] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[12] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[13] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 955
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 906
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||