化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1807-1816.DOI: 10.11949/0438-1157.20211639
收稿日期:
2021-11-17
修回日期:
2022-01-12
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
李琳,王同华
作者简介:
刘宇喆(1991—),男,博士研究生,基金资助:
Yuzhe LIU(),Chengcai LI,Lin LI(),Shaohui WANG,Peihui LIU,Tonghua WANG()
Received:
2021-11-17
Revised:
2022-01-12
Online:
2022-04-05
Published:
2022-04-25
Contact:
Lin LI,Tonghua WANG
摘要:
以生物质柞木为原料,采用不同活化法制备具有不同结构特征的柞木基活性炭,利用N2吸附、FT-IR、XPS、XRD、Raman光谱等表征手段对活性炭的微结构特性进行解析,探究活化方式对活性炭微结构性能的影响;微结构与超级电容器性能的构效关系。研究表明: KOH和H3PO4-KOH法制备的活性炭微孔发达,炭结构表面缺陷位与杂原子丰富,在低电流密度下表现出更高的比电容;H3PO4-KOH法制备的活性炭具备更宽的微介孔分布与孔道连通性,使其具有更好的电容保持率;CO2、H3PO4和H3PO4-CO2法制备的活性炭介孔发达,微孔体积小,孔道连通性差,炭结构相对完整,裸露于炭结构表面的缺陷与杂原子相对较少,尽管电容保持率较高,但比电容较低。因此,高性能的超级电容器活性炭电极应具有发达的微孔结构、较宽的微介孔分布、通畅的微介孔连通结构,同时含有更多的裸露于炭结构表面的结构缺陷与杂原子基团,从而提高超级电容器的能量密度。
中图分类号:
刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance[J]. CIESC Journal, 2022, 73(4): 1807-1816.
图1 不同活化方式制备的活性炭N2吸脱附等温线(a)与孔径分布(插图为介孔分布)(b)以及不同孔径范围内孔体积(c)
Fig.1 Activated carbons prepared by different activation methods: N2 adsorption isotherms (a), micropore size distribution (the inset shows the distribution of mesopore) (b), and pore volume in different pore size range (c)
Samples | SBET/(m2·g-1) | Vtot/(cm3·g-1) | Vmic/(cm3·g-1) | Vmeso/(cm3·g-1) | (Vmic/ Vtot)/% | (Vmeso/Vtot)/% |
---|---|---|---|---|---|---|
ZM-C | 905 | 0.720 | 0.153 | 0.378 | 21.24 | 52.48 |
ZM-P | 1453 | 1.027 | 0.260 | 0.438 | 25.32 | 42.65 |
ZM-K | 1702 | 0.827 | 0.576 | 0.153 | 69.62 | 18.49 |
ZM-P-K | 2070 | 1.010 | 0.737 | 0.170 | 72.97 | 16.83 |
ZM-P-C | 1478 | 1.088 | 0.233 | 0.501 | 21.42 | 46.05 |
表1 不同方法制备活性炭的孔结构信息
Table 1 The pore structure of activated carbon prepared by different activation methods
Samples | SBET/(m2·g-1) | Vtot/(cm3·g-1) | Vmic/(cm3·g-1) | Vmeso/(cm3·g-1) | (Vmic/ Vtot)/% | (Vmeso/Vtot)/% |
---|---|---|---|---|---|---|
ZM-C | 905 | 0.720 | 0.153 | 0.378 | 21.24 | 52.48 |
ZM-P | 1453 | 1.027 | 0.260 | 0.438 | 25.32 | 42.65 |
ZM-K | 1702 | 0.827 | 0.576 | 0.153 | 69.62 | 18.49 |
ZM-P-K | 2070 | 1.010 | 0.737 | 0.170 | 72.97 | 16.83 |
ZM-P-C | 1478 | 1.088 | 0.233 | 0.501 | 21.42 | 46.05 |
图3 不同活化方式制备活性炭的XRD谱图(a),Raman光谱(b)以及拉曼光谱拟合(c)
Fig.3 XRD pattern (a) and Raman spectra (b) of activated carbon prepared by different activation methods, and Raman fitting spectra (c)
Samples | ID1/ IG | ID2/ IG | ID3/ IG |
---|---|---|---|
ZM-C | 1.12 | 0.41 | 0.55 |
ZM-P | 1.07 | 0.40 | 0.44 |
ZM-P-C | 1.18 | 0.34 | 0.45 |
ZM-K | 1.97 | 0.46 | 1.36 |
ZM-P-K | 1.47 | 0.49 | 0.99 |
表2 拉曼拟合D峰 (ID1, ID2, ID3)与G峰(IG)强度比
Table 2 Intensity ratio of ID1, ID2, ID3, and IG of Raman fitting peaks
Samples | ID1/ IG | ID2/ IG | ID3/ IG |
---|---|---|---|
ZM-C | 1.12 | 0.41 | 0.55 |
ZM-P | 1.07 | 0.40 | 0.44 |
ZM-P-C | 1.18 | 0.34 | 0.45 |
ZM-K | 1.97 | 0.46 | 1.36 |
ZM-P-K | 1.47 | 0.49 | 0.99 |
Samples | Elements content/%(atom) | O 1s distribution/%(atom) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | O | P | O-Ⅰ | O-Ⅱ | O-Ⅲ | O-Ⅳ | O-Ⅴ | |
ZM-C | 92.29 | 0.99 | 6.72 | — | — | 27.94 | — | 44.73 | 27.33 |
ZM-P | 90.12 | 0.20 | 8.24 | 1.44 | 12.80 | — | 56.60 | 17.46 | 11.39 |
ZM-K | 90.47 | 0.61 | 8.92 | — | — | 51.06 | — | 34.60 | 14.34 |
ZM-P-K | 89.14 | 0.51 | 9.66 | 0.69 | 10.84 | 28.74 | 41.84 | 12.85 | 5.73 |
ZM-P-C | 94.53 | 0.28 | 4.72 | 0.47 | 11.78 | 26.80 | 35.83 | 16.95 | 8.63 |
表3 五种活化方式元素组成和各个样品中O 1s的存在形式
Table 3 The element composition and types of O functional groups of activated carbon by different activation methods
Samples | Elements content/%(atom) | O 1s distribution/%(atom) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | O | P | O-Ⅰ | O-Ⅱ | O-Ⅲ | O-Ⅳ | O-Ⅴ | |
ZM-C | 92.29 | 0.99 | 6.72 | — | — | 27.94 | — | 44.73 | 27.33 |
ZM-P | 90.12 | 0.20 | 8.24 | 1.44 | 12.80 | — | 56.60 | 17.46 | 11.39 |
ZM-K | 90.47 | 0.61 | 8.92 | — | — | 51.06 | — | 34.60 | 14.34 |
ZM-P-K | 89.14 | 0.51 | 9.66 | 0.69 | 10.84 | 28.74 | 41.84 | 12.85 | 5.73 |
ZM-P-C | 94.53 | 0.28 | 4.72 | 0.47 | 11.78 | 26.80 | 35.83 | 16.95 | 8.63 |
图5 ZM-P-K在50 mV·s-1不同电压窗口下的CV曲线(a);在5 mV·s-1扫速下不同活化方式制备的活性炭CV曲线(b);0.1 A·g-1下的GCD曲线(c);在不同电流密度下的比电容与电容保持率(d);循环稳定性(e);Nyquist谱图(f)
Fig.5 CV curves of ZM-P-K at different voltage windows of 50 mV·s-1 (a); CV curves at 5 mV·s-1 (b); GCD curves at 0.1 A·g-1 (c); Specific capacitance and capacitance retention at different scanning speed (d); Cyclic stability of activated carbon by different activation method (e); Nyquist plots (f)
1 | Taer E. Activated carbon electrode made from coconut husk waste for supercapacitor application[J]. International Journal of Electrochemical Science, 2018: 12072-12084. |
2 | Heidarinejad Z, Dehghani M H, Heidari M, et al. Methods for preparation and activation of activated carbon: a review[J]. Environmental Chemistry Letters, 2020, 18(2): 393-415. |
3 | Al Subhi H, Adeeb M S, Pandey M, et al. Effect of different activation agents on the pollution removal efficiency of date seed activated carbon: process optimization using response surface methodology[J]. Applied Water Science, 2020, 10(7): 1-9. |
4 | 王浩, 李琳, 王春雷, 等. 聚酰亚胺基高比表面活性炭及其电化学性能研究[J]. 无机材料学报, 2017, 32(11): 1181-1187. |
Wang H, Li L, Wang C L, et al. Preparation and electrochemical performance of polyimide-based activated carbons with high surface area[J]. Journal of Inorganic Materials, 2017, 32(11): 1181-1187. | |
5 | Liu B, Du C, Chen J J, et al. Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution[J]. Chemical Physics Letters, 2021, 771: 138535. |
6 | Merzougui Z, Azoudj Y, Bouchemel N, et al. Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water[J]. Desalination and Water Treatment, 2011, 29(1/2/3): 236-240. |
7 | Sun P, Zhang S N, Bi H, et al. Tuning nitrogen species and content in carbon materials through constructing variable structures for supercapacitors[J]. Journal of Inorganic Materials, 2021, 36(7): 766. |
8 | Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials, 2021, 36(1): 49-68. |
9 | Endo M, Takeda T, Kim Y J, et al. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons[J]. Carbon Letters, 2001,1(3): 117-128. |
10 | Kim K S, Park S J. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor[J]. Journal of Electroanalytical Chemistry, 2012, 673: 58-64. |
11 | Gandla D, Wu X D, Zhang F M, et al. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels[J]. ACS Omega, 2021, 6(11): 7615-7625. |
12 | 许伟佳, 邱大平, 刘诗强, 等. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
Xu W J, Qiu D P, Liu S Q, et al. Preparation of cork-derived porous activated carbon for high performance supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(6): 625-632. | |
13 | Afif A, Rahman S M, Tasfiah Azad A, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage — a review[J]. Journal of Energy Storage, 2019, 25: 100852. |
14 | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
Zuo S L. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
15 | 左宋林. 磷酸活化法制备活性炭综述(Ⅰ): 磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9. |
Zuo S L. Review on phosphoric acid activation for preparation of activated carbon (Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9. | |
16 | Quach N K N, Yang W D, Chung Z J, et al. The influence of the activation temperature on the structural properties of the activated carbon xerogels and their electrochemical performance[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-9. |
17 | 苟进胜, 常建民, 任学勇. 生物质热解过程中氮元素迁移规律研究进展[J]. 科技导报, 2012, 30(14): 70-74. |
Gou J S, Chang J M, Ren X Y. A review on the release characterization of nitrogen speicies during biomass pyrolysis[J]. Science & Technology Review, 2012, 30(14): 70-74. | |
18 | Rawal S, Kumar Y, Mandal U K, et al. Synthesis and electrochemical study of phosphorus-doped porous carbon for supercapacitor applications[J]. SN Applied Sciences, 2021, 3(2): 1-14. |
19 | Ghosh S, Barg S, Jeong S M, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
20 | Shang M, Zhang J, Liu X C, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science, 2021, 542: 148697. |
21 | Yang Z, Gao Y, Zhao Z, et al. Phytic acid assisted formation of P-doped hard carbon anode with enhanced capacity and rate capability for lithium ion capacitors[J]. Journal of Power Sources, 2020, 474: 228500. |
22 | Dou Q Y, Park H S. Perspective on high-energy carbon-based supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 286-305. |
23 | Liu Y Z, Wang H, Li C C, et al. Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes[J]. International Journal of Energy Research, 2022, 46(1): 370-382. |
24 | Jiang C L, Yakaboylu G A, Yumak T, et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes[J]. Renewable Energy, 2020, 155: 38-52. |
25 | Koutcheiko S, Vorontsov V. Activated carbon derived from wood biochar and its application in supercapacitors[J]. Journal of Biobased Materials and Bioenergy, 2013, 7(6): 733-740. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 任博阳, 车晓刚, 刘思宇, 王满, 韩兴华, 董婷, 杨卷. 熔融盐法制备煤基多孔碳纳米片用于钠离子电池负极[J]. 化工学报, 2022, 73(10): 4745-4753. |
[3] | 范炳芝, 王一鑫, 廉霄甜, 谢维松, 于洋, 梁建华. 三萜类化合物抗病毒的构效关系及其作用机制研究进展[J]. 化工学报, 2020, 71(9): 4071-4101. |
[4] | 胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546. |
[5] | 田璐瑶, 王梓豪, 粟杨, 文华强, 申威峰. 基于深度学习的溶剂定量构效关系建模研究进展[J]. 化工学报, 2020, 71(10): 4462-4472. |
[6] | 马香成, 秦蔚, 陈清林, 张冰剑. 芳烃分子描述符的修正和沸点预测建模[J]. 化工学报, 2019, 70(11): 4306-4314. |
[7] | 韩世昌, 邹正光, 吕婷婷, 吴星宇, 杨倩. Ag掺杂VO2(B)正极材料的合成及其电化学性能[J]. 化工学报, 2018, 69(4): 1741-1748. |
[8] | 李巧乐, 燕映霖, 杨蓉, 陈利萍, 秦海超, 史忙忙, 魏一奇. 锂硫电池用玉米苞叶基活性炭/硫复合正极材料的电化学性能[J]. 化工学报, 2017, 68(11): 4376-4382. |
[9] | 牛立博, 刘辰, 马苑媛, 张慧玲, 白国义. 核壳结构镍基纳米催化剂的制备及其在肉桂醛加氢反应中的性能[J]. 化工学报, 2017, 68(11): 4161-4168. |
[10] | 杨蓉, 王黎晴, 吕梦妮, 邓坤发, 燕映霖, 任冰, 李兰. 锂硫电池石墨烯/纳米硫复合正极材料的制备及电化学性能[J]. 化工学报, 2016, 67(10): 4363-4369. |
[11] | 何朋, 陈建新, 苏敏, 韩健, 程昆. 贝壳的化学成分及其结构特征[J]. 化工学报, 2015, 66(S2): 450-454. |
[12] | 朱丽华, 孙菡蕾, 曹志凯, 郑进保, 张诺伟, 陈秉辉. 多活性中心协同加氢纳米催化剂的设计和制备[J]. 化工学报, 2015, 66(8): 3091-3097. |
[13] | 张睿, 吴元欣, 何云蔚, 艾常春. Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池正极材料的流变相法合成及电化学性能表征[J]. 化工学报, 2015, 66(8): 3177-3182. |
[14] | 江浩, 李春忠. 表面化学反应控制制备多级结构电极材料及性能[J]. 化工学报, 2015, 66(8): 2872-2877. |
[15] | 李吉, 魏彤, 闫俊, 龙从来, 范壮军. 石墨烯纳米片/CoS2复合材料的制备及其在超级电容器中的应用[J]. 化工学报, 2014, 65(7): 2849-2854. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 655
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||