化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4298-4310.DOI: 10.11949/0438-1157.20220863
闫帅(), 杨海平(), 陈应泉, 王贤华, 曾阔, 陈汉平
收稿日期:
2022-06-21
修回日期:
2022-09-06
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
杨海平
作者简介:
闫帅(1992—),男,博士研究生,andrewys@163.com
基金资助:
Shuai YAN(), Haiping YANG(), Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN
Received:
2022-06-21
Revised:
2022-09-06
Online:
2022-10-05
Published:
2022-11-02
Contact:
Haiping YANG
摘要:
CO2光热催化转化是一种新型的CO2利用技术,该过程绿色、经济且无须额外能量输入,是当下的热门研究领域之一。本文主要总结了CO2光热催化转化领域的最新研究进展,介绍了基于光热转化的光热催化剂设计方法,同时从光热催化机理出发解析了CO2还原反应的光热催化剂构建策略,并揭示了CO2还原反应中的光热协同耦合机制,为光热催化剂的设计以及CO2的高效转化和利用提供参考。
中图分类号:
闫帅, 杨海平, 陈应泉, 王贤华, 曾阔, 陈汉平. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310.
Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction[J]. CIESC Journal, 2022, 73(10): 4298-4310.
序号 | 反应名称 | 反应式 | ΔH298 K/(kJ·mol-1) | 常用催化剂 |
---|---|---|---|---|
(1) | 逆水煤气变换(RWGS) | CO2 + H2 CO + H2O | +41.0 | Fe3O4、Cu/CeO2、Ru/Al2O3等 |
(2) | Sabatier | CO2 + 4H2 CH4 + 2H2O | -165.1 | Ni/SiO2、Ru/CeO2、Co/Al2O3等 |
(3) | 甲醇合成 | CO2 + 3H2 CH3OH + H2O | -49.4 | Cu/ZnO、Pd/ZnO、In2O3等 |
(4) | 甲烷干重整 | CO2 + CH4 2CO + 2H2 | +247.3 | Ni/CeO2、Ni/Al2O3等 |
表1 CO2主要的还原反应和常用的催化剂
Table 1 CO2 reduction reactions and common catalysts
序号 | 反应名称 | 反应式 | ΔH298 K/(kJ·mol-1) | 常用催化剂 |
---|---|---|---|---|
(1) | 逆水煤气变换(RWGS) | CO2 + H2 CO + H2O | +41.0 | Fe3O4、Cu/CeO2、Ru/Al2O3等 |
(2) | Sabatier | CO2 + 4H2 CH4 + 2H2O | -165.1 | Ni/SiO2、Ru/CeO2、Co/Al2O3等 |
(3) | 甲醇合成 | CO2 + 3H2 CH3OH + H2O | -49.4 | Cu/ZnO、Pd/ZnO、In2O3等 |
(4) | 甲烷干重整 | CO2 + CH4 2CO + 2H2 | +247.3 | Ni/CeO2、Ni/Al2O3等 |
催化剂 | 反应条件 | 产物 | (选择性/%)/ [产率/(mmol·g-1·h-1)] | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 批次/流动 | 光功率/(W·cm-2) | ||||
逆水煤气变换RWGS | |||||||
In-Em In2O3 | 300 | 0.18 | 批次 | — | CO | 99.99% | [ |
Fe2Ce1-300 | 419 | 0.18 | 批次 | 2.2 | CO | 约100% | [ |
Ni12P5/SiO2 | 约400 | 0.12 | 批次 | 2.3 | CO | 99.7%/960 | [ |
C-In2O3-x | 约400 | — | 批次 | 2.98 | CO | 约100%/123.6 | [ |
Sabatier | |||||||
Ru@FL-LDHs | 约350 | — | 流动 | 约1.0 | CH4 | 约100%/277.0 | [ |
Ni/Ce0.9Si0.1O2 | 约300 | 0.075 | 批次 | — | CH4 | 约100% | [ |
Ni-BaTiO3 | 约250 | — | 批次 | — | CH4 | 约100%/103.7 | [ |
Rh/Al | 约700 | 1.5 | 批次 | 11.3 | CH4 | 约100%/550 | [ |
Co/CeO2 | 300 | — | 流动 | 0.5 | CH4 | 94% | [ |
Ni/Nb2C | 330 | 0.1 | 批次 | 1.5 | CH4 | 83.4% | [ |
甲醇合成 | |||||||
H z In2O3-x (OH) y | — | 约0.21 | 批次 | 2.0 | CH3OH | 36.7% | [ |
CO | 63.3% | ||||||
Cu/ZnO/Al2O3 | 275 | 2.1 | 流动 | 0.6 | CH3OH | 约90% | [ |
CO | 约10% | ||||||
Pd/ZnO | 250 | — | 流动 | — | CH3OH | 3.8 | [ |
甲烷干重整 | |||||||
Co/Co-Al2O3 | 665 | — | 流动 | 35.39 | CO | 2607.6 | [ |
H2 | 1192.2 | ||||||
Pt/Co-Al2O3 | 666 | — | 流动 | 34.3 | CO | 5364.6 | [ |
H2 | 4536.0 | ||||||
Ni/m-TiO2 | 600 | — | 流动 | — | CO | 131.72 | [ |
H2 | 95.34 | ||||||
Rh/WO3 | 500 | — | 流动 | — | CO | 约370 | [ |
H2 | 约355 | ||||||
其他 | |||||||
CoFeAl LDH-650 | 约310 | 0.18 | 批次 | 5.2 | CH4 | 60% | [ |
CO | 5% | ||||||
C2+ | 35% | ||||||
θ-Fe3C | 310 | 0.1 | 批次 | 2.05 | CO | 25.3% | [ |
CH4 | 63.3% | ||||||
C2+ | 11.4% | ||||||
Na-Co@C | 235 | 0.28 | 批次 | 2.4 | CH4 | 50.2% | [ |
CO | 4.8% | ||||||
EtOH | 6.5% | ||||||
C2+ | 36.2% | ||||||
other | 2.3% | ||||||
Co7Cu1Mn1O x | 200 | — | 流动 | — | CO | 6.8% | [ |
CH4 | 85.8% | ||||||
C2+ | 7.4% |
表2 CO2还原反应中的光热催化剂
Table 2 Photothermal catalysts for CO2 reduction
催化剂 | 反应条件 | 产物 | (选择性/%)/ [产率/(mmol·g-1·h-1)] | 文献 | |||
---|---|---|---|---|---|---|---|
温度/℃ | 压力/MPa | 批次/流动 | 光功率/(W·cm-2) | ||||
逆水煤气变换RWGS | |||||||
In-Em In2O3 | 300 | 0.18 | 批次 | — | CO | 99.99% | [ |
Fe2Ce1-300 | 419 | 0.18 | 批次 | 2.2 | CO | 约100% | [ |
Ni12P5/SiO2 | 约400 | 0.12 | 批次 | 2.3 | CO | 99.7%/960 | [ |
C-In2O3-x | 约400 | — | 批次 | 2.98 | CO | 约100%/123.6 | [ |
Sabatier | |||||||
Ru@FL-LDHs | 约350 | — | 流动 | 约1.0 | CH4 | 约100%/277.0 | [ |
Ni/Ce0.9Si0.1O2 | 约300 | 0.075 | 批次 | — | CH4 | 约100% | [ |
Ni-BaTiO3 | 约250 | — | 批次 | — | CH4 | 约100%/103.7 | [ |
Rh/Al | 约700 | 1.5 | 批次 | 11.3 | CH4 | 约100%/550 | [ |
Co/CeO2 | 300 | — | 流动 | 0.5 | CH4 | 94% | [ |
Ni/Nb2C | 330 | 0.1 | 批次 | 1.5 | CH4 | 83.4% | [ |
甲醇合成 | |||||||
H z In2O3-x (OH) y | — | 约0.21 | 批次 | 2.0 | CH3OH | 36.7% | [ |
CO | 63.3% | ||||||
Cu/ZnO/Al2O3 | 275 | 2.1 | 流动 | 0.6 | CH3OH | 约90% | [ |
CO | 约10% | ||||||
Pd/ZnO | 250 | — | 流动 | — | CH3OH | 3.8 | [ |
甲烷干重整 | |||||||
Co/Co-Al2O3 | 665 | — | 流动 | 35.39 | CO | 2607.6 | [ |
H2 | 1192.2 | ||||||
Pt/Co-Al2O3 | 666 | — | 流动 | 34.3 | CO | 5364.6 | [ |
H2 | 4536.0 | ||||||
Ni/m-TiO2 | 600 | — | 流动 | — | CO | 131.72 | [ |
H2 | 95.34 | ||||||
Rh/WO3 | 500 | — | 流动 | — | CO | 约370 | [ |
H2 | 约355 | ||||||
其他 | |||||||
CoFeAl LDH-650 | 约310 | 0.18 | 批次 | 5.2 | CH4 | 60% | [ |
CO | 5% | ||||||
C2+ | 35% | ||||||
θ-Fe3C | 310 | 0.1 | 批次 | 2.05 | CO | 25.3% | [ |
CH4 | 63.3% | ||||||
C2+ | 11.4% | ||||||
Na-Co@C | 235 | 0.28 | 批次 | 2.4 | CH4 | 50.2% | [ |
CO | 4.8% | ||||||
EtOH | 6.5% | ||||||
C2+ | 36.2% | ||||||
other | 2.3% | ||||||
Co7Cu1Mn1O x | 200 | — | 流动 | — | CO | 6.8% | [ |
CH4 | 85.8% | ||||||
C2+ | 7.4% |
45 | Chen G B, Gao R, Zhao Y F, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30(3): 1704663. |
46 | Song C Q, Liu X, Xu M, et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: from oxide to carbide[J]. ACS Catalysis, 2020, 10(18): 10364-10374. |
47 | Liu L C, Puga A V, Cored J, et al. Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites[J]. Applied Catalysis B: Environmental, 2018, 235: 186-196. |
48 | He Z H, Li Z H, Wang Z Y, et al. Photothermal CO2 hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts[J]. Green Chemistry, 2021, 23(16): 5775-5785. |
49 | Sun M Y, Zhao B H, Chen F P, et al. Thermally-assisted photocatalytic CO2 reduction to fuels[J]. Chemical Engineering Journal, 2021, 408: 127280. |
50 | 赵江婷, 熊卓, 赵永椿, 等. 热助光催化CO2还原研究进展与展望[J]. 洁净煤技术, 2021, 27(2): 132-138. |
Zhao J T, Xiong Z, Zhao Y C, et al. Progress and prospect of thermal assisted photocatalytic CO2 reduction[J]. Clean Coal Technology, 2021, 27(2): 132-138. | |
51 | Song C Q, Wang Z H, Yin Z, et al. Principles and applications of photothermal catalysis[J]. Chem Catalysis, 2022, 2(1): 52-83. |
52 | Nawaz F, Yang Y W, Zhao S H, et al. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination[J]. Journal of Materials Chemistry A, 2021, 9(30): 16233-16254. |
53 | Luo S Q, Ren X H, Lin H W, et al. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects[J]. Chemical Science, 2021, 12(16): 5701-5719. |
54 | Lee S A, Link S. Chemical interface damping of surface plasmon resonances[J]. Accounts of Chemical Research, 2021, 54(8): 1950-1960. |
55 | Jia J, O'Brien P G, He L, et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5 [J]. Advanced Science, 2016, 3(10): 1600189. |
56 | Li Z H, Shi R, Zhao J Q, et al. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system[J]. Nano Research, 2021, 14(12): 4828-4832. |
57 | Li Z H, Liu J J, Shi R, et al. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons[J]. Advanced Energy Materials, 2022, 12(12): 2200475. |
58 | Wu S W, Li Y Z, Zhang Q, et al. Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate, large light-to-fuel efficiency, and excellent durability for photothermocatalytic CO2 reduction[J]. Advanced Energy Materials, 2020, 10(42): 2002602. |
59 | Visconti C G, Martinelli M, Falbo L, et al. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts[J]. Catalysis Today, 2016, 277: 161-170. |
60 | Jia J, Qian C X, Dong Y C, et al. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering-perfecting imperfection[J]. Chemical Society Reviews, 2017, 46(15): 4631-4644. |
61 | Wang L, Dong Y C, Yan T J, et al. Black indium oxide a photothermal CO2 hydrogenation catalyst[J]. Nature Communications, 2020, 11: 2432. |
62 | Li J, Ye Y H, Ye L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3– x [J]. Journal of Materials Chemistry A, 2019, 7(6): 2821-2830. |
63 | Zhao J, Bai Y J, Liang X X, et al. Photothermal catalytic CO2 hydrogenation over molybdenum carbides: crystal structure and photothermocatalytic synergistic effects[J]. Journal of CO2 Utilization, 2021, 49: 101562. |
64 | Wang L, Feng Y J, Wang K Y, et al. Solar water sterilization enabled by photothermal nanomaterials[J]. Nano Energy, 2021, 87: 106158. |
65 | Zhang J H, Liu J C, Wang X Y, et al. Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane[J]. Applied Catalysis B: Environmental, 2019, 259: 118063. |
66 | Kim M, Lee J H, Nam J M. Plasmonic photothermal nanoparticles for biomedical applications[J]. Advanced Science, 2019, 6(17): 1900471. |
67 | Mateo D, Cerrillo J L, Durini S, et al. Fundamentals and applications of photo-thermal catalysis[J]. Chemical Society Reviews, 2022, 51(4): 1547. |
68 | Li X Q, Everitt H O, Liu J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis[J]. Nano Research, 2020, 13(5): 1268-1280. |
69 | 张泽凯, 章鼎, 刘华彦, 等. 光热催化CO2还原过程的研究进展[J]. 能源环境保护, 2021, 35(6): 1-9. |
Zhang Z K, Zhang D, Liu H Y, et al. Progress in photothermal catalysis of CO2 reduction[J]. Energy Environmental Protection, 2021, 35(6): 1-9. | |
70 | Xiong Y, Liu X, Hu Y, et al. Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation[J]. Nano Research, 2022, 15(6): 4965-4972. |
71 | Meng F T, Ju B Z, Zhang S F, et al. Nano/microstructured materials for solar-driven interfacial evaporators towards water purification[J]. Journal of Materials Chemistry A, 2021, 9(24): 13746-13769. |
72 | Wang W K, Xu D F, Cheng B, et al. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity[J]. Journal of Materials Chemistry A, 2017, 5(10): 5020-5029. |
73 | Li Y, Wang W N, Zhan Z L, et al. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 386-392. |
74 | Xu M, Hu X T, Wang S L, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis, 2019, 377: 652-661. |
75 | Bie C B, Zhu B C, Xu F Y, et al. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction[J]. Advanced Materials, 2019, 31(42): e1902868. |
76 | Xu F Y, Meng K, Zhu B C, et al. Graphdiyne: a new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials, 2019, 29(43): 1904256. |
77 | Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations[J]. Chemical Society Reviews, 2015, 44(10): 2893-2939. |
78 | Zheng Y K, Zhang L, Guan J, et al. Controlled synthesis of Cu0/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(4): 1754-1761. |
1 | Gong E, Ali S, Hiragond C B, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy & Environmental Science, 2022, 15(3): 880-937. |
2 | Kong T T, Jiang Y W, Xiong Y J. Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? [J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
3 | 王瑞, 许义榕, 孟渴欣, 等. 二氧化碳转化制取燃料及高值化学品研究进展[J]. 环境工程技术学报, 2020, 10(4): 639-646. |
Wang R, Xu Y R, Meng K X, et al. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. | |
4 | Ouyang S X, Wang W Z. Green conversion of CO2 [J]. Journal of Inorganic Materials, 2022, 37(1): 1. |
5 | 王冰, 赵美明, 周勇, 等. 光催化还原二氧化碳制备太阳燃料研究进展及挑战[J]. 中国科学: 技术科学, 2017, 47(3): 286-296. |
Wang B, Zhao M M, Zhou Y, et al. Recent progress and challenge in research of photocatalytic reduction of CO2 to solar fuels[J]. Scientia Sinica (Technologica), 2017, 47(3): 286-296. | |
6 | Wang X N, Wang F L, Sang Y H, et al. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion[J]. Advanced Energy Materials, 2017, 7(23): 1700473. |
7 | Ghoussoub M, Xia M K, Duchesne P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis[J]. Energy & Environmental Science, 2019, 12(4): 1122-1142. |
8 | Zhu L L, Gao M M, Peh C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons, 2018, 5(3): 323-343. |
9 | Wang Z Q, Yang Z Q, Fang R M, et al. A state-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum[J]. Chemical Engineering Journal, 2022, 429: 132322. |
10 | Tavasoli A, Ozin G. Green syngas by solar dry reforming[J]. Joule, 2018, 2(4): 571-575. |
79 | Khan A A, Tahir M. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in-situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light[J]. Applied Catalysis B: Environmental, 2021, 285: 119777. |
80 | Cai S C, Chen J, Li Q, et al. Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and au cocatalyst[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14221-14229. |
81 | Wang K, Jiang R M, Peng T, et al. Modeling the effect of Cu doped TiO2 with carbon dots on CO2 methanation by H2O in a photo-thermal system[J]. Applied Catalysis B: Environmental, 2019, 256: 117780. |
82 | Jin B B, Ye X, Zhong H, et al. Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst[J]. Chinese Chemical Letters, 2022, 33(2): 812-816. |
83 | Huang W H, Zhang L, Li Z, et al. Efficient CO2 reduction with H2O via photothermal chemical reaction based on Au-MgO dual catalytic site on TiO2 [J]. Journal of CO2 Utilization, 2022, 55: 101801. |
84 | Song C K, Baek J, Kim T Y, et al. Exploring crystal phase and morphology in the TiO2 supporting materials used for visible-light driven plasmonic photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 198: 91-99. |
85 | Li S M, Wang C H, Li D S, et al. Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol[J]. Chemical Engineering Journal, 2022, 435: 135133. |
86 | Xu C Y, Huang W H, Li Z, et al. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2 [J]. ACS Catalysis, 2018, 8(7): 6582-6593. |
87 | Robatjazi H, Zhao H Q, Swearer D F, et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles[J]. Nature Communications, 2017, 8: 27. |
88 | Nguyen N T, Yan T J, Wang L, et al. Plasmonic titanium nitride facilitates indium oxide CO2 photocatalysis[J]. Small, 2020, 16(49): 2005754. |
89 | Cai M J, Wu Z Y, Li Z, et al. Greenhouse-inspired supra-photothermal CO2 catalysis[J]. Nature Energy, 2021, 6(8): 807-814. |
90 | Zhang W B, Wang L B, Wang K W, et al. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation[J]. Small, 2017, 13(7): 1602583. |
11 | Zhao L K, Qi Y H, Song L Z, et al. Solar-driven water-gas shift reaction over CuO x /Al2O3 with 1.1% of light-to-energy storage[J]. Angewandte Chemie International Edition, 2019, 58(23): 7708-7712. |
12 | Tong Y X, Song L Z, Ning S B, et al. Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst[J]. Applied Catalysis B: Environmental, 2021, 298: 120551. |
13 | 秦宏宇, 柯义虎, 李景云, 等. 光热协同效应在催化反应中的应用研究进展[J]. 分子催化, 2021(4):375-389. |
Qin H Y, Ke Y H, Li J Y, et al. Application of photo-thermal synergistic effect in catalytic reactions[J]. Journal of Molecular Catalysis (China), 2021(4):375-389. | |
14 | 李娟娟, 张梦, 蔡松财, 等. 光热催化氧化VOCs的研究进展[J]. 环境工程, 2020, 38(1): 13-20. |
Li J J, Zhang M, Cai S C, et al. Light-driven thermocatalysis/photo-thermocatalysis of VOCs: recent advances and future perspectives[J]. Environmental Engineering, 2020, 38(1): 13-20. | |
15 | Li K, Peng B S, Peng T Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016, 6(11): 7485-7527. |
16 | Wang Z J, Song H, Liu H M, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects[J]. Angewandte Chemie International Edition, 2020, 59(21): 8016-8035. |
17 | Wang S H, Tountas A A, Pan W B, et al. CO2 footprint of thermal versus photothermal CO2 catalysis[J]. Small, 2021, 17(48): 2007025. |
18 | Meng X G, Wang T, Liu L Q, et al. Photothermal conversion of CO2 into CH4 with H2 over Group Ⅷ nanocatalysts: an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition, 2014, 53(43): 11478-11482. |
19 | Marxer D, Furler P, Takacs M, et al. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy & Environmental Science, 2017, 10(5): 1142-1149. |
20 | Chen G B, Waterhouse G I N, Shi R, et al. From solar energy to fuels: recent advances in light-driven C1 chemistry[J]. Angewandte Chemie International Edition, 2019, 58(49): 17528-17551. |
91 | Ha M N, Lu G Z, Liu Z F, et al. 3DOM-LaSrCoFeO6– δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4 [J]. Journal of Materials Chemistry A, 2016, 4(34): 13155-13165. |
92 | O'Brien P G, Ghuman K K, Jelle A A, et al. Enhanced photothermal reduction of gaseous CO2 over silicon photonic crystal supported ruthenium at ambient temperature[J]. Energy & Environmental Science, 2018, 11(12): 3443-3451. |
93 | Low J, Zhang L Y, Zhu B C, et al. TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15653-15661. |
94 | Jelle A A, Ghuman K K, O'Brien P G, et al. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support [J]. Advanced Energy Materials, 2018, 8(9): 1870041. |
95 | Hoch L B, O'Brien P G, Jelle A, et al. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels[J]. ACS Nano, 2016, 10(9): 9017-9025. |
96 | O'Brien P G, Sandhel A, Wood T E, et al. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons[J]. Advanced Science, 2014, 1(1): 1400001. |
97 | Feng K, Wang S H, Zhang D K, et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis[J]. Advanced Materials, 2020, 32(24): 2000014. |
98 | Ma H, Xue M Q. Recent advances in the photothermal applications of two-dimensional nanomaterials: photothermal therapy and beyond[J]. Journal of Materials Chemistry A, 2021, 9(33): 17569-17591. |
99 | Zhang D K, Lv K X, Li C R, et al. All-earth-abundant photothermal silicon platform for CO2 catalysis with nearly 100% sunlight harvesting ability[J]. Solar RRL, 2021, 5(2): 2000387. |
100 | Khan I S, Mateo D, Shterk G, et al. An efficient metal-organic framework-derived nickel catalyst for the light driven methanation of CO2 [J]. Angewandte Chemie, 2021, 60(51): 26476-26482. |
101 | Li Y G, Hao J C, Song H, et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J]. Nature Communications, 2019, 10: 2359. |
102 | Ning S B, Xu H, Qi Y H, et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid[J]. ACS Catalysis, 2020, 10(8): 4726-4736. |
21 | Hong J N, Xu C Y, Deng B W, et al. Photothermal chemistry based on solar energy: from synergistic effects to practical applications[J]. Advanced Science, 2022, 9(3): 2103926. |
22 | Tavasoli A V, Preston M, Ozin G. Photocatalytic dry reforming: what is it good for? [J]. Energy & Environmental Science, 2021, 14(5): 3098-3109. |
23 | Keller N, Ivanez J, Highfield J, et al. Photo-/thermal synergies in heterogeneous catalysis: towards low-temperature (solar-driven) processing for sustainable energy and chemicals[J]. Applied Catalysis B: Environmental, 2021, 296: 120320. |
24 | De S, Dokania A, Ramirez A, et al. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis, 2020, 10(23): 14147-14185. |
25 | 全国煤化工信息总站. 千吨级CO2加氢制汽油示范装置通过科技成果评价[J]. 煤化工, 2022, 50(2): 67. |
Domestic Coal Chemical Industry Information Station. Kiloton CO2 hydrogenation pilot for gasoline production was approved of technical evaluation[J]. Coal Chemical Industry, 2022, 50(2): 67. | |
26 | Fu J W, Jiang K X, Qiu X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. |
27 | 王锋, 周化岚, 张建国. 太阳能驱动二氧化碳转化[J]. 自然杂志, 2021, 43(1): 61-70. |
Wang F, Zhou H L, Zhang J G. Carbon dioxide conversion by solar energy[J]. Chinese Journal of Nature, 2021, 43(1): 61-70. | |
28 | Wei W Q, Wei Z, Li R Z, et al. Subsurface oxygen defects electronically interacting with active sites on In2O3 for enhanced photothermocatalytic CO2 reduction[J]. Nature Communications, 2022, 13: 3199. |
29 | Zhao J Q, Yang Q, Shi R, et al. FeO–CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO[J]. NPG Asia Materials, 2020, 12: 5. |
30 | Xu Y F, Duchesne P N, Wang L, et al. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides[J]. Nature Communications, 2020, 11: 5149. |
31 | Qi Y, Jiang J, Liang X, Ouyang S, et al. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Advanced Functional Materials, 2021, 31(22): 2100908. |
32 | Ren J, Ouyang S X, Xu H, et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system [J]. Advanced Energy Materials, 2017, 7(5): 1601657. |
33 | Jantarang S, Lovell E C, Tan T H, et al. Altering the influence of ceria oxygen vacancies in Ni/Ce x Si y O2 for photothermal CO2 methanation[J]. Catalysis Science & Technology, 2021, 11(15): 5297-5309. |
34 | Mateo D, Morlanes N, Maity P, et al. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate [J]. Advanced Functional Materials, 2021, 31(8): 2170053. |
35 | Fu G, Jiang M, Liu J, et al. Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO2 methanation with nearly 100% selectivity[J]. Nano Letter, 2021, 21 (20): 8824-8830. |
36 | Ullah S, Lovell E C, Wong R J, et al. Light-enhanced CO2 reduction to CH4 using nonprecious transition-metal catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5056-5066. |
37 | Wu Z Y, Li C R, Li Z, et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis[J]. ACS Nano, 2021, 15(3): 5696-5705. |
38 | Zhang Z S, Mao C L, Meira D M, et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst[J]. Nature Communications, 2022, 13: 1512. |
39 | Xie B Q, Wong R J, Tan T H, et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina[J]. Nature Communications, 2020, 11: 1615. |
40 | Wu D D, Deng K X, Hu B, et al. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst[J]. ChemCatChem, 2019, 11(6): 1598-1601. |
41 | Wu S W, Li Y Z, Zhang Q, et al. High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-vis-IR irradiation[J]. Energy & Environmental Science, 2019, 12(8): 2581-2590. |
42 | Xie Z H, Li Y Z, Zhou Z Y, et al. Significantly enhancing the solar fuel production rate and catalytic durability for photothermocatalytic CO2 reduction by a synergetic effect between Pt and Co doped Al2O3 nanosheets[J]. Journal of Materials Chemistry A, 2022, 10(13): 7099-7110. |
43 | Xie T, Zhang Z Y, Zheng H Y, et al. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst[J]. Chemical Engineering Journal, 2022, 429: 132507. |
44 | Liu H M, Meng X G, Yang W W, et al. Photo-thermal CO2 reduction with methane on Group Ⅷ metals: in situ reduced WO3 support for enhanced catalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(11): 1976-1982. |
[1] | 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485. |
[2] | 芮泽宝, 杨晓庆, 陈俊妃, 纪红兵. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
[3] | 李永旺,马文平,孙予罕,徐元源,钟炳. 走向分子水平的催化剂设计:科学与工程 [J]. CIESC Journal, 1998, 49(S1): 10-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||