化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 479-485.DOI: 10.11949/0438-1157.20191033
收稿日期:
2019-09-16
修回日期:
2019-10-21
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
李富恒
Received:
2019-09-16
Revised:
2019-10-21
Online:
2020-04-25
Published:
2020-04-25
Contact:
Fuheng LI
摘要:
纳米流体应用于太阳能集热器是太阳能光热转化的重要突破,石墨烯纳米材料在可见光和近红外区域具有较好的吸收特性,实验基于Hummer法制备了石墨烯纳米片材料,对其进行表征。并配制了不同质量分数石墨烯纳米片-乙二醇纳米流体,将其在太阳能模拟器下进行闷晒实验,计算石墨烯纳米片的光热转化效率,并以基液作对比分析其光热转化特性。结果表明纳米流体溶液的光热转化效率随着其浓度的增加而提高,在达到临界值后光热转化效率不再提高反而降低。其中浓度为0.0007%(质量)时的石墨烯纳米片纳米流体溶液温度增加最高,为65.56℃,光热转化效率达到最高约为76.35%,较乙二醇效率升高49.65%。表明石墨烯纳米片具有良好的光学特性,在太阳能集热器中具有较好的应用前景。
中图分类号:
李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
Fuheng LI. Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids[J]. CIESC Journal, 2020, 71(S1): 479-485.
Concentration/%(mass) | PTC effectiveness/% | Improve/% |
---|---|---|
0 | 51.02 | — |
0.0001 | 54.56 | 6.94 |
0.0003 | 66.81 | 30.95 |
0.0005 | 70.83 | 38.83 |
0.0007 | 76.35 | 49.65 |
0.001 | 73.81 | 44.67 |
表1 不同浓度石墨烯纳米片纳米流体的光热转化效率
Table 1 Photothermal conversion efficiency of graphene nanosheet nanofluids with different concentrations
Concentration/%(mass) | PTC effectiveness/% | Improve/% |
---|---|---|
0 | 51.02 | — |
0.0001 | 54.56 | 6.94 |
0.0003 | 66.81 | 30.95 |
0.0005 | 70.83 | 38.83 |
0.0007 | 76.35 | 49.65 |
0.001 | 73.81 | 44.67 |
1 | Brini R, Amara M, Jemmali H. Renewable energy consumption, international trade, oil price and economic growth inter-linkages: the case of tunisia[J]. Renew. Sustain. Energy Rev., 2017, 76(9): 620-627. |
2 | Mussard M. Solar energy under cold climatic conditions: a review[J]. Renew. Sustain. Energy Rev., 2017, 74(7): 733-745. |
3 | Johansson T B, Patwardhan A P. Global energy assessment—toward a sustainable future [J]. Bibliogr., 2012, 3/4(31): 9-17. |
4 | Xiao C F, Luo H L, Tang R S, et al. Solar thermal utilization in China[J]. Renewable Energy, 2004, 29(9): 1549-1556. |
5 | Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review[J]. Energy Conversion and Management, 2019, 183(3): 307-331. |
6 | Fu H D, Zhao X X, Ma L, et al. A comparative study on three types of solar utilization technologies for buildings: photovoltaic, solar thermal and hybrid photovoltaic/thermal systems[J]. Energy Conversion and Management, 2017, 140(15): 1- 13. |
7 | Leite G N P, Weschenfelder F, Araújo A M, et al. An economic analysis of the integration between air-conditioning and solar photovoltaic systems [J]. Energy Conversion and Management, 2019,185(4): 836-849. |
8 | Fang J, Liu Q B, Guo S P, et al. Spanning solar spectrum: a combined photochemical and thermochemical process for solar energy storage[J]. Applied Energy, 2019, 247(8): 116-126. |
9 | Fang J, Liu Q B, Guo S P, et al. A full-spectrum solar chemical energy storage system with photochemical process and thermochemical process[J]. Energy Procedia, 2018, 152(10): 1063-1068. |
10 | Otanicar T P, Phelan P E, Patrick R S, et al. Nanofluid based direct absorption solar collector[J]. Renew. Sustain. Energy Rev., 2010, 2(3): 1063-1073. |
11 | Robert A T,Patrick E P, Todd P O, et al. Nanofluid opticalproperty characterization: towards efficient direct absorption solar collectors[J]. Nanoscale Res., 2011,225(6):207-218. |
12 | Gorji T B, Ranjbar A A. A review on optical properties and application of nanofluids in direct absorption solar collectors(DASCs) [J]. Renew. Sustain. Energy Rev., 2017, 72(5): 10-32. |
13 | Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Sol. Energy, 1975, 17(3): 179-183. |
14 | Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME, 1995, 23(1): 99-105. |
15 | Bandarra E P, Mendoza O S H, Beicker C L L, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system[J]. Energy Convers. Manag., 2014, 84(8): 261-267. |
16 | Amjad M, Yang Y, Raza G. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets[J]. Colloid Interface Sci., 2017, 506(11): 83-92. |
17 | Zamzamian A, KeyanpourRad M, KianiNeyestani M Y, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2014, 74(11): 658-664. |
18 | Jamal-Abad M T, Zamzamian A, Imani E, et al. Experimental study of the performance of a flat-plate collector using Cu-water nanofluid[J]. Thermophys. Heat Transf., 2013, 27(4): 756-760. |
19 | Chen M J, He Y R, Zhu J Q, et al. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J]. Energy Convers. Manag., 2016, 112(3): 21-30. |
20 | Zhang H, Chen H J, Du X, et al. Photothermal conversion characteristics of gold nanoparticle dispersions [J]. Sol. Energy, 2014, 100(2): 141-147. |
21 | Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396. |
22 | Mahian O, Kianifar A, Sahin A Z, et al. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models[J]. Heat and Mass Transf., 2014, 78(11): 64-75. |
23 | Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector [J]. Renewable Energy, 2018, 118(8): 122-130. |
24 | Goudarzi K, Shojaeizadeh E, Nejati F. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector[J]. Appl. Therm. Eng., 2014, 73(1): 1234-1241. |
25 | Karami M, Akhavan-Bahabadi M A, Delfani S, et al. Experimental investigation of CuO nanofluid based direct absorption solar collector for residential applications[J]. Renew. Sustain. Energy Rev., 2015, 52(12): 793-801. |
26 | Meibodi S S, Kianifar A, Niazmand H, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG- water nanofluids[J]. International Communications in Heat and Mass Transfer, 2015, 65(7): 71-75. |
27 | Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396. |
28 | Karami M, Akhavan-Bahabadi M A, Delfani S, et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector[J]. Sol. Energy Mater. Sol. Cells, 2014, 121(2): 114-118. |
29 | Khullar V, Tyagi H, Phelan P E, et al. Solar energy harvesting using nanofluids-based concentrating solar collector[J]. Nanotechnol. Eng. Med., 2013, 3(3): 310-319. |
30 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 30(6): 666-669. |
31 | 郭晓琴, 王永凯, 余小霞, 等. 石墨烯纳米片的制备和表征[J]. 化工新型材料, 2013, (7): 128-130. |
Guo X Q, Wang Y K, Yu X X, et al. Preparation and characterization of graphene nanosheets[J]. New Chemical Materials, 2013, (7): 128-130. |
[1] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[2] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[3] | 闫帅, 杨海平, 陈应泉, 王贤华, 曾阔, 陈汉平. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310. |
[4] | 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420. |
[5] | 齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017. |
[6] | 刘昌会, 刘红莉, 张天键, 饶中浩. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341. |
[7] | 张矿生, 唐梅荣, 薛小佳, 李楷, 邵炎, 周健, 岳冲冲, 李壮壮, 潘鹏举. 聚乳酸/聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1181-1190. |
[8] | 刘昌会,张海悦,李业美,张天键,顾彦龙. 低共熔溶剂在储能与传热方面的研究进展[J]. 化工学报, 2021, 72(10): 4973-4986. |
[9] | 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226. |
[10] | 何莉, 邹雄, 叶昊天, 李香琴, 董宏光. 邻甲酚-间二甲苯-乙二醇液液平衡数据的测定与关联[J]. 化工学报, 2020, 71(7): 2993-2999. |
[11] | 杨庆, 许思敏, 张大伟, 杨庆春. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
[12] | 郎中敏, 吴刚强, 赫文秀, 韩晓星, 苟延梦, 李双莹. 二氧化铈/水基纳米流体核沸腾传热特性[J]. 化工学报, 2020, 71(5): 2061-2068. |
[13] | 赵佳腾,王增鹏,戴宇成,刘昌会,饶中浩. 两亲性纳米流体太阳能重力热管传热性能研究[J]. 化工学报, 2020, 71(12): 5461-5469. |
[14] | 杨小青,廖泉飞,易芸,杨春亮,赵天翔,胡兴邦,刘飞. 三乙二醇二甲醚吸收低浓度SO2性能及机理研究[J]. 化工学报, 2020, 71(11): 5052-5058. |
[15] | 刘雪珂,张丽,刘芬,高帅涛,余江,商剑锋,欧天雄,周政,陈平文. NHD/MDEA/H2O复合脱硫液催化水解羰基硫[J]. 化工学报, 2020, 71(11): 5286-5293. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 609
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||