化工学报 ›› 2018, Vol. 69 ›› Issue (12): 4947-4958.DOI: 10.11949/j.issn.0438-1157.20180520
芮泽宝1, 杨晓庆1, 陈俊妃1, 纪红兵2
收稿日期:
2018-05-21
修回日期:
2018-08-23
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
芮泽宝
基金资助:
国家自然科学基金项目(21776322,21576298,U1663220,21425627)。
RUI Zebao1, YANG Xiaoqing1, CHEN Junfei1, JI Hongbing2
Received:
2018-05-21
Revised:
2018-08-23
Online:
2018-12-05
Published:
2018-12-05
Supported by:
supported by the National Natural Science Foundation of China (21776322, 21576298, U1663220, 21425627).
摘要:
挥发性有机物(VOCs)是一类重要的空气污染物。催化氧化技术可以将VOCs转化为无毒的CO2和H2O,是有效的治理方式之一。针对传统的热催化氧化技术的高能耗和光催化净化VOCs技术的低效率问题,光催化耦合强化热催化的光热协同催化净化VOCs技术近些年来受到广泛关注,并表现出比传统热催化或光催化净化技术更优异的净化性能。总结了近年国内外研究者在光热催化净化VOCs领域所取得的主要研究进展,重点讨论了光热协同作用机制的认知和光热协同催化材料的设计理念,包括贵金属型和金属氧化物型光热协同催化材料,并对光热协同催化净化技术的未来发展方向进行了展望。
中图分类号:
芮泽宝, 杨晓庆, 陈俊妃, 纪红兵. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958.
RUI Zebao, YANG Xiaoqing, CHEN Junfei, JI Hongbing. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives[J]. CIESC Journal, 2018, 69(12): 4947-4958.
[1] | LI W, WANG J, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148:81-87. |
[2] | FANG S, LI Y, YANG Y, et al. Mg doped OMS-2 nanorod:a highly efficient catalyst for purification of volatile organic compounds with full solar spectrum irradiation[J]. Environmental Science Nano, 2017, 4:1798-1807. |
[3] | HAN W, DENG J, XIE S, et al. Gold supported on iron oxide nanodisk as efficient catalyst for the removal of toluene[J]. Industrial & Engineering Chemistry Research, 2014, 53:3486-3494. |
[4] | ZHAO S, LI K, JIANG S, et al. Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion[J]. Applied Catalysis B:Environmental, 2016, 181:236-248. |
[5] | RUI Z, TANG M, JI W, et al. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation[J]. Catalysis Today, 2017, 297:159-166. |
[6] | HUANG Y, LONG B, TANG M, et al. Bifunctional catalytic material:an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photo-catalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 181:779-787. |
[7] | YANG T, HUO Y, LIU Y, et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content[J]. Applied Catalysis B:Environmental, 2017, 200:543-551. |
[8] | ZOU X, RUI Z, JI H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation[J]. ACS Catalysis, 2017, 7:1615-1625. |
[9] | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1):317-326. RUI Z B, JI H B. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1):317-326. |
[10] | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7):2832-2840. GU O Y, LIAO Y T, CHEN R J, et al. Copper manganese oxide catalysts for toluene combustion[J]. CIESC Journal, 2016, 67(7):2832-2840. |
[11] | WANG Y, XUE Y, ZHAO C, et al. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chemical Engineering Journal, 2016, 300:300-305. |
[12] | CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54:8900-8907. |
[13] | WANG M, ZHANG F, ZHU X, et al. DRIFTS evidence for facet-dependent adsorption of gaseous toluene on TiO2 with relative photo-catalytic properties[J]. Langmuir, 2015, 31:1730-1736. |
[14] | KONG J, RUI Z, JI H. Enhanced photo-catalytic mineralization of gaseous toluene over SrTiO3 by surface hydroxylation[J]. Industrial & Engineering Chemistry Research, 2016, 55:11923-11930. |
[15] | QIAN X, REN M, YUE D, et al. Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs[J]. Applied Catalysis B:Environmental, 2017, 212:1-6. |
[16] | TIAN M, LIAO F, KE Q, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photo-degradation of toluene[J]. Chemical Engineering Journal, 2017, 328:962-976. |
[17] | KONG J, RUI Z, LIU S, et al. Homeostasis in CuxO/SrTiO3 hybrid allows highly active and stable visible light photocatalytic performance[J]. Chemical Communications, 2017, 53:12329-12332. |
[18] | KONG J, LAI X, RUI Z, et al. Multichannel charge separation promoted ZnO/P25 heterojunctions for the photo-catalytic oxidation of toluene[J]. Chinese Journal of Catalysis, 2016, 37:869-877. |
[19] | KONG J, RUI Z, WANG X, et al. Visible-light decomposition of gaseous toluene over BiFeO3-(Bi/Fe)2O3 heterojunctions with enhanced performance[J]. Chemical Engineering Journal, 2016, 302:552-559. |
[20] | KONG J, RUI Z, JI H. Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance[J]. Industrial & Engineering Chemistry Research, 2017, 56:9999-10008. |
[21] | LI Y, HUANG J, PENG T, et al. Photo-thermo-catalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite[J]. ChemCatChem, 2010, 2:1082-1087. |
[22] | SELISHCHEV D, KOLOBOV N, PERSHIN A, et al. TiO2 mediated photocatalytic oxidation of volatile organic compounds:formation of CO as a harmful by-product[J]. Applied Catalysis B:Environmental, 2017, 200:503-513. |
[23] | JI J, XU Y, HUANG H, et al. Mesoporous TiO2 under VUV irradiation:enhanced photocatalytic oxidation for VOCs degradation at room temperature[J]. Chemical Engineering Journal, 2017, 327:490-499. |
[24] | KENNEDY J, DATYE A. Photo-thermal heterogeneous oxidation of ethanol over Pt/TiO2[J]. Journal of Catalysis, 1998, 179:375-389. |
[25] | 王光平, 仇伟, 任成军, 等. 混晶Zr掺杂Pt/TiO2催化剂光热催化氧化苯[J]. 催化学报, 2009, 30:913-918. WANG G P, QIU W, REN C J, et al. Photo-thermal catalytic oxidation of benzene by mixed crystal Zr doped Pt/TiO2[J]. Chinese Journal of Catalysis, 2009, 30:913-918. |
[26] | ZHENG Y, WANG W, JIANG D, et al. Insights into the solar light driven thermo-catalytic oxidation of VOCs over tunnel structured manganese oxides[J]. Physical Chemistry Chemical Physics, 2016, 18:18180-18186. |
[27] | NAKANO K, OBUCHI E, NANRI M. Thermo-photo-catalytic decomposition of acetaldehyde over Pt-TiO2/SiO2[J]. Chemical Engineering Research & Design, 2004, 82:297-301. |
[28] | TAN T, SCOTT J, YUN H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catalysis, 2017, 6:1870-1879. |
[29] | CHEN J, HE Z, LI G, et al. Visible-light-enhanced photo-thermo-catalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene[J]. Applied Catalysis B:Environmental, 2017, 209:146-154. |
[30] | LARSEN G, FARR W, MURPH S. Multifunctional Fe2O3-Au nanoparticles with different shapes:enhanced catalysis photothermal effects and magnetic recyclability[J]. Journal of Physical Chemistry C, 2016, 120:15162-15172. |
[31] | MAHMOUD M, EL-SAYED M. Enhancing catalytic efficiency of hollow palladium nanoparticles by photo-thermal heating of gold nanoparticles added to the cavity:palladium-gold nanorattles[J]. ChemCatChem, 2015, 6:3540-3546. |
[32] | XU J, LI X, WU X, et al. Hierarchical CuO colloidosomes and their structure enhanced photothermal catalytic activity[J]. Journal of Physical Chemistry C, 2016, 120:12666-12672. |
[33] | ZHONG H, WEI Y, YUE Y, et al. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photo-thermal induced interface reaction[J]. Nanotechnology, 2016, 27:135701. |
[34] | NIKITENKO S, CHAVE T, CAU C, et al. Photothermal hydrogen production using noble metal-free Ti@TiO2 core-shell nanoparticles under visible-NIR light irradiation[J]. ACS Catalysis, 2015, 5:4790-4795. |
[35] | LIU X, YE L, MA Z, et al. Photo-thermal effect of infrared light to enhance solar catalytic hydrogen generation[J]. Catalysis Communications, 2017, 102:13-16. |
[36] | XU L, HA M, GUO Q, et al. Photo-thermal catalytic activity of combustion synthesized LaCoxFe1-xO3 (0 ≤ x ≤ 1) perovskite for CO2 reduction with H2O to CH4 and CH3OH[J]. RSC Advances, 2017, 7:45949-45959. |
[37] | WANG L, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photo-thermal catalytic performance[J]. Journal of Materials Chemistry A, 2016, 4:5314-5322. |
[38] | MENG X, WANG T, LIU L, et al. Photo-thermal conversion of CO2 into CH4 with H2 over group Ⅷ nanocatalysts:an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition, 2014, 53:11478-82. |
[39] | HOU J, LI Y, MAO M, et al. Full solar spectrum light driven thermo-catalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification[J]. Nanoscale, 2015, 7:2633-2640. |
[40] | HOU J, LI Y, MAO M, et al. Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity[J]. ACS Applied Materials & Interfaces, 2014, 6:14981-14987. |
[41] | YANG Y, LI Y, MAO M, et al. UV-Vis-infrared light driven thermo-catalysis for environmental purification on ramsdellite MnO2 hollow spheres considerably promoted by a novel photoactivation[J]. ACS Applied Materials & Interfaces, 2017, 9:2350-2357. |
[42] | HU C, LIN L, HU X. Morphology of metal nanoparticles photo-deposited on TiO2/silical gel and photothermal activity for destruction of ethylene[J]. Chinese Journal of Environmental Science (English Edition), 2006, 18:76-82. |
[43] | REN C, ZHOU T, CHEN G, et al. Pt-TiO2/CeO2-MnO2 composite catalyst photo-thermal degradation of gas phase benzene[J]. Chinese Journal of Catalysis, 2006, 27:1048-1050. |
[44] | GU Y, JIAO Y, ZHOU X, et al. Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol[J]. Nano Research, 2017, 11:1-16. |
[45] | REN L, MAO M, LI Y, et al. Novel photo-thermo-catalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement[J]. Applied Catalysis B:Environmental, 2016, 198:303-310. |
[46] | MAO M, LI Y, HOU J, et al. Extremely efficient full solar spectrum light driven thermo-catalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst[J]. Applied Catalysis B:Environmental, 2015, s174/175:496-503. |
[47] | ARANDIYAN H, DAI H, DENG J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 supported Ag nanoparticles for the combustion of methane[J]. Journal of Physical Chemistry C, 2014, 118:14913-14928. |
[48] | ZOU J, SI Z, CAO Y, et al. Localized surface plasmon resonance assisted photo-thermal catalysis of CO and toluene oxidation over Pd-CeO2 catalyst under visible light irradiation[J]. Journal of Physical Chemistry C, 2016, 120:29116-29125. |
[49] | LI Y, MAO M, LV H, et al. Efficient UV-Vis-IR light-driven thermocatalytic purification of benzene on Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation[J]. Environmental Science Nano, 2016, 4:373-384. |
[50] | WANG P, HUANG B, QIN X, et al. Ag@AgCl:a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition, 2008, 47:7931-7933. |
[51] | SCHUCK P. Nanoimaging:hot electrons go through the barrier[J]. Nature Nanotechnology, 2013, 8:799-800. |
[52] | KALE M, CHRISTOPHER P. Plasmons at the interface[J]. Science, 2015, 349:587-588. |
[53] | WU K, CHEN J, MCBRIDE J, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 2015, 349:632-635. |
[54] | NIU W, ZHANG W, FIRDOZ S, et al. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property[J]. Chemistry of Material, 2014, 26:2180-2186. |
[55] | QIU J, WEI W. Surface plasmon-mediated photo-thermal chemistry[J]. Journal of Physical Chemistry C, 2014, 118:20735-20749. |
[56] | MANJAVACAS A, LIU J, KULKARNI V, et al. Plasmon-induced hot carriers in metallic nanoparticles[J]. ACS Nano, 2014, 8:7630-7638. |
[57] | 孔洁静. 基于钙钛矿型复合氧化物高效光催化净化VOCs体系的构建[D]. 广州:中山大学, 2017. KONG J J. Perovskite-based composite oxides for effective photocatalytic degradation of VOCs[D]. Guangzhou:Sun Yat-sen University, 2017. |
[58] | YANG C, BALAKRISHNAN N, BHETHANABOTLA V, et al. Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface:implications for catalysis and photocatalysis[J]. Journal of Physical Chemistry C, 2017, 118:4702-4714. |
[59] | QIU Y, WU L, LI J, et al. Preparation of titanate/N-doped anatase composite hierarchical microspheres with enhanced visible light photocatalytic activity[J]. Catalysis Letters, 2015, 145:647-653. |
[60] | ZENG M, LI Y, MAO M, et al. Synergetic effect between photo-catalysis on TiO2 and thermo-catalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites[J]. ACS Catalysis, 2015, 5:3278-3286. |
[61] | LI Y, SUN Q, KONG M, et al. Coupling oxygen ion conduction to photo-catalysis in mesoporous nanorod-like ceria significantly improves photo-catalytic efficiency[J]. Journal of Physical Chemistry C, 2011, 115:14050-14057. |
[62] | GANG W, HUANG B, LOU Z, et al. Valence state heterojunction Mn3O4/MnCO3:photo and thermal synergistic catalyst[J]. Applied Catalysis B:Environmental, 2016, 180:6-12. |
[63] | PELUSO M, GAMBARO L, PRONSATO E, et al. Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs[J]. Catalysis Today, 2008, s133/134/135:487-492. |
[64] | HOU J, LIU L, LI Y, et al. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation[J]. Environmental Science & Technology, 2013, 47:13730-13736. |
[65] | KÄHLER K, HOLZ M, ROHE M, et al. Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts[J]. Journal of Catalysis, 2013, 299:162-170. |
[66] | ZHANG C, LIU F, ZHAI Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie International Edition, 2012, 51:9628-9632. |
[67] | JODLOWSKI P, JEDRZEJCZYK R, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface[J]. Journal of Catalysis, 2017, 350:1-12. |
[68] | LI S, LU X, GUO W, et al. Formaldehyde oxidation on the Pt/TiO2(101) surface:a DFT investigation[J]. Journal of Organometallic Chemistry, 2012, 704:38-48. |
[69] | WANG X, RUI Z, ZENG Y, et al. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO2(101) and formaldehyde:a density functional theory study[J]. Catalysis Today, 2017, 297:151-158. |
[70] | ROSTAMI R, JONIDI J. Application of an adsorptive-thermocatalytic process for BTX removal from polluted air flow[J]. Journal of Environmental Health Science & Engineering, 2014, 12:89. |
[71] | CHEN H, RUI Z, WANG X, et al. Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature[J]. Catalysis Today, 2015, 258:56-63. |
[1] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[2] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[3] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[4] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[5] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[6] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[7] | 闫帅, 杨海平, 陈应泉, 王贤华, 曾阔, 陈汉平. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310. |
[8] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[9] | 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
[10] | 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. |
[11] | 陶长元, 王秀秀, 刘作华, 刘仁龙, 栾进华. 湿法磷酸浸出强化及有机质去除研究[J]. 化工学报, 2020, 71(10): 4792-4799. |
[12] | 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064. |
[13] | 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943. |
[14] | 纪冬丽, 张竞, 孟凡生, 王业耀. EK/Fe0-PRB联合修复实际砷污染土壤的协同机制[J]. 化工学报, 2018, 69(12): 5276-5282. |
[15] | 张娟, 胡颜荟, 任腾杰, 李未康, 赵地顺. Ti-MCM-41负载酞菁铁光催化氧化脱硫[J]. 化工学报, 2015, 66(9): 3437-3443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||