1 |
Zang D Y, Tarafdar S, Tarasevich Y Y, et al. Evaporation of a droplet: from physics to applications[J]. Physics Reports, 2019, 804: 1-56.
|
2 |
Hsieh S S, Leu H Y, Liu H H. Spray cooling characteristics of nanofluids for electronic power devices[J]. Nanoscale Research Letters, 2015, 10: 139.
|
3 |
李春曦, 庄立宇, 施智贤, 等. 不混溶液体表面上蒸发液滴的动力学特性[J]. 化工学报, 2020, 71(8): 3500-3509.
|
|
Li C X, Zhuang L Y, Shi Z X, et al. Dynamics of volatile drop on surface of another immiscible liquid[J]. CIESC Journal, 2020, 71(8): 3500-3509.
|
4 |
Gleason K. Steady-state droplet evaporation: contact angle influence on the evaporation efficiency[J]. International Journal of Heat and Mass Transfer, 2016, 101: 418-426.
|
5 |
Wang C, Xu R N, Song Y, et al. Study on water droplet flash evaporation in vacuum spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 112: 279-288.
|
6 |
胡银春, 张雪荣, 黄棣, 等. 蒸发液滴中的流动与传质行为: 理论与应用[J]. 材料导报, 2017, 31(7): 1-5, 18.
|
|
Hu Y C, Zhang X R, Huang D, et al. Flow and mass transfer laws in drying droplets: theory and applications[J]. Materials Review, 2017, 31(7): 1-5, 18.
|
7 |
Misyura S Y. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall[J]. Applied Surface Science, 2017, 414: 188-196.
|
8 |
Rowan S M, McHale G, Newton M I, et al. Evaporation of microdroplets of three alcohols[J]. The Journal of Physical Chemistry B, 1997, 101(8): 1265-1267.
|
9 |
闫鑫, 徐进良. 太阳能加热液滴在亲疏水表面“黏-滑”蒸发[J]. 化工进展, 2019, 38(6): 2618-2625.
|
|
Yan X, Xu J L. The “stick-slip” evaporation behavior of sessile droplet with solar heating on hydrophilic and hydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2618-2625.
|
10 |
金艳艳, 单彦广. 水-乙醇二元混合固着液滴的蒸发特性[J]. 化工学报, 2018, 69(7): 2908-2915.
|
|
Jin Y Y, Shan Y G. Evaporation characteristics of sessile ethanol-water mixture droplets[J]. CIESC Journal, 2018, 69(7): 2908-2915.
|
11 |
Gurrala P. Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118770.
|
12 |
Ye S, Wu C M, Zhang L, et al. Evolution of thermal patterns during steady state evaporation of sessile droplets[J]. Experimental Thermal and Fluid Science, 2018, 98: 712-718.
|
13 |
Rahimzadeh A. Experimental study on the evaporation of sessile droplets excited by vertical and horizontal ultrasonic vibration[J]. International Journal of Heat and Mass Transfer, 2017, 114: 786-795.
|
14 |
Xu H J, Wang J F, Tian J M, et al. Evaporation characteristics and heat transfer enhancement of sessile droplets under non-uniform electric field[J]. Experimental Thermal and Fluid Science, 2021, 126: 110378.
|
15 |
Liu L, Liang X J, Wang X L, et al. Evaporation of a sessile water droplet during depressurization[J]. International Journal of Thermal Sciences, 2021, 159: 106587.
|
16 |
董佰扬, 单彦广, 翁志浩. 基于动态接触角的固着液滴蒸发过程模拟[J]. 动力工程学报, 2020, 40(12): 1002-1007.
|
|
Dong B Y, Shan Y G, Weng Z H. Simulation of sessile droplet evaporation based on dynamic contact angle[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 1002-1007.
|
17 |
Nguyen T A H, Biggs S R, Nguyen A V. Analytical model for diffusive evaporation of sessile droplets coupled with interfacial cooling effect[J]. Langmuir, 2018, 34(23): 6955-6962.
|
18 |
Zhu J L, Shi W Y. Hydrothermal waves in sessile droplets evaporating at a constant contact angle mode[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121131.
|
19 |
Shen Y, Kang F, Cheng Y P, et al. Numerical and theoretical analysis of fast evaporating sessile droplets with coupled fields[J]. International Journal of Thermal Sciences, 2022, 172: 107284.
|
20 |
Bormashenko E. Wetting of flat and rough curved surfaces[J]. The Journal of Physical Chemistry C, 2009, 113(40): 17275-17277.
|
21 |
Dhar P, Khurana G, Anilakkad R H, et al. Superhydrophobic surface curvature dependence of internal advection dynamics within sessile droplets[J]. Langmuir, 2019, 35(6): 2326-2333.
|
22 |
Viswanadam G, Chase G G. Contact angles of drops on curved superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2012, 367(1): 472-477.
|
23 |
Savva N, Kalliadasis S. Two-dimensional droplet spreading over topographical substrates[J]. Physics of Fluids, 2009, 21(9): 092102.
|
24 |
Paul A, Khurana G, Dhar P. Substrate concavity influenced evaporation mechanisms of sessile droplets[J]. Physics of Fluids, 2021, 33(8): 082003.
|
25 |
Espín L, Kumar S. Droplet spreading and absorption on rough, permeable substrates[J]. Journal of Fluid Mechanics, 2015, 784: 465-486.
|
26 |
Petsi A J, Burganos V N. Temperature distribution inside an evaporating two-dimensional droplet lying on curved or flat substrates[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(1 pt 1): 011201.
|
27 |
Shen Y, Cheng Y P, Xu J L, et al. Theoretical analysis of a sessile evaporating droplet on a curved substrate with an interfacial cooling effect[J]. Langmuir, 2020, 36(20): 5618-5625.
|
28 |
Erbil H Y. Evaporation of pure liquid sessile and spherical suspended drops: a review[J]. Advances in Colloid and Interface Science, 2012, 170(1/2): 67-86.
|
29 |
Poling B E. The Properties of Gases and Liquids[M]. New York: McGraw-Hill Company Inc., 1997, 11: 635-690.
|
30 |
Brutin D, Sobac B, Rigollet F, et al. Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface[J]. Experimental Thermal and Fluid Science, 2011, 35(3): 521-530.
|
31 |
Xu X F, Ma L R. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach[J]. Scientific Reports, 2015, 5: 8614.
|