化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1870-1881.DOI: 10.11949/0438-1157.20231015
秦晗淞1(), 李国梁2, 闫昊2(), 冯翔2, 刘熠斌2, 陈小博2, 杨朝合2
收稿日期:
2023-09-27
修回日期:
2024-01-11
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
闫昊
作者简介:
秦晗淞(1994—),男,硕士,工程师,qinhansong.ripp@sinopec.com
基金资助:
Hansong QIN1(), Guoliang LI2, Hao YAN2(), Xiang FENG2, Yibin LIU2, Xiaobo CHEN2, Chaohe YANG2
Received:
2023-09-27
Revised:
2024-01-11
Online:
2024-05-25
Published:
2024-06-25
Contact:
Hao YAN
摘要:
多级孔ZSM-5分子筛具有丰富的孔道结构,其独特的微-介复合孔道结构可显著促进油酸甲酯(OAME)等大分子反应的发生,但其在分子层面上的促进机制及构-效关系仍不明晰。本工作采用Monte Carlo模拟(MC)结合分子动力学(MD)方法,研究了OAME催化裂解反应中反应物和5种产物分子(丙烯、丁烯、苯、甲苯和二甲苯)在多级孔分子筛上的吸附和扩散行为。通过分析吸附等温线、吸附密度图和反应物种的扩散系数,发现升温不利于OAME的吸附,从而抑制了反应的发生,这与实验结果一致。同时,直孔道和多级孔道这两种吸附位点在催化裂解反应中起到的作用截然不同:直孔道提供芳构化反应活性中心,而多级孔道则主要促进BTX主产物分子的传质扩散。这种多孔道的协同催化作用使得多级孔分子筛相较于微孔分子筛展现出优异的催化性能。此外,发现多级孔ZSM-5分子筛能提高芳烃收率的主要原因是其能够加速BTX向介孔的快速扩散。以上模拟结果不仅有助于从微观角度优化脂肪酸酯催化裂解反应的实验条件,同时也丰富了对多级孔分子筛能多产芳烃微观机制的理解。
中图分类号:
秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881.
Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite[J]. CIESC Journal, 2024, 75(5): 1870-1881.
参数 | 实验值 | 模拟值 |
---|---|---|
孔径/nm | 1.6,3.0 | 1.5,3.0 |
硅铝比 | 12.5 | 12.5 |
表1 多级孔ZSM-5分子筛模型的物性信息
Table 1 Physical properties of hierarchical ZSM-5 zeolite model
参数 | 实验值 | 模拟值 |
---|---|---|
孔径/nm | 1.6,3.0 | 1.5,3.0 |
硅铝比 | 12.5 | 12.5 |
反应物种 | Ds×1010/(m2/s) | 温度/℃ | 文献 |
---|---|---|---|
丙烯 | 100 | 280 | [ |
丁烯 | 109 | 400 | [ |
0.0001 | 2~27 | [ | |
苯 | 0.74±0.20 | 427 | [ |
0.0001~0.01 | 50~100 | [ | |
甲苯 | 0.000065~0.000247 | 100~200 | [ |
0.097 | 400 | [ | |
二甲苯 | 0.0000035 | 210 | [ |
1.96 | 400 | [ | |
0.00004~0.000068 | 100~200 | [ |
表2 微孔ZSM-5分子筛中反应物种的扩散系数
Table 2 Diffusion coefficients of reactive species in microporous ZSM-5 zeolite
反应物种 | Ds×1010/(m2/s) | 温度/℃ | 文献 |
---|---|---|---|
丙烯 | 100 | 280 | [ |
丁烯 | 109 | 400 | [ |
0.0001 | 2~27 | [ | |
苯 | 0.74±0.20 | 427 | [ |
0.0001~0.01 | 50~100 | [ | |
甲苯 | 0.000065~0.000247 | 100~200 | [ |
0.097 | 400 | [ | |
二甲苯 | 0.0000035 | 210 | [ |
1.96 | 400 | [ | |
0.00004~0.000068 | 100~200 | [ |
图3 多级孔ZSM-5分子筛(0.5NaOHZ5)中CO2的模拟吸附等温线和实验吸附等温线[39]
Fig.3 Simulated and experimental adsorption isotherms of CO2 in hierarchical ZSM-5 zeolite (0.5NaOHZ5)[39]
图7 500℃下低压和高压下油酸甲酯 (OAME) 和多级孔ZSM-5分子筛相互作用曲线
Fig.7 Potential energy distribution between OAME and hierarchical ZSM-5 zeolite under low and high pressures at 500℃
图9 丙烯、丁烯、苯、甲苯和二甲苯在多级孔ZSM-5分子筛中的单组分吸附等温线
Fig.9 One-component adsorption isotherm of propylene, butene, benzene, toluene and xylene in hierarchical ZSM-5 zeolite
图10 产物分子在多级孔ZSM-5分子筛中的竞争吸附等温线和相互作用曲线
Fig.10 Competitive adsorption isotherm and potential energy distribution of product molecules in hierarchical ZSM-5 zeolite
图11 500 kPa下多级孔ZSM-5分子筛中产物分子(丙烯、丁烯、苯、甲苯和二甲苯)的吸附密度图
Fig.11 Adsorption density diagram of product molecules (C3H6, C4H8 and BTX) in hierarchical ZSM-5 zeolite at 500 kPa
产物 | Ds×108/(m2/s) | D0×107/(m2/s) | ED/ (kJ/mol) | R2/% | ||
---|---|---|---|---|---|---|
400℃ | 500℃ | 600℃ | ||||
丙烯 | 1.56 | 2.67 | 3.89 | 8.48 | 1.17 | 99.95 |
丁烯 | 0.77 | 2.05 | 3.07 | 33.50 | 1.77 | 99.73 |
苯 | 0.81 | 1.24 | 1.65 | 1.84 | 0.91 | 99.85 |
甲苯 | 0.62 | 1.18 | 1.48 | 2.97 | 1.12 | 98.54 |
二甲苯 | 0.76 | 1.23 | 1.50 | 1.56 | 0.88 | 97.64 |
表3 不同温度下产物分子在多级孔ZSM-5分子筛中的扩散系数和Arrhenius公式参数
Table 3 Ds and Arrhenius parameters of product molecules in hierarchical ZSM-5 zeolite at different temperatures
产物 | Ds×108/(m2/s) | D0×107/(m2/s) | ED/ (kJ/mol) | R2/% | ||
---|---|---|---|---|---|---|
400℃ | 500℃ | 600℃ | ||||
丙烯 | 1.56 | 2.67 | 3.89 | 8.48 | 1.17 | 99.95 |
丁烯 | 0.77 | 2.05 | 3.07 | 33.50 | 1.77 | 99.73 |
苯 | 0.81 | 1.24 | 1.65 | 1.84 | 0.91 | 99.85 |
甲苯 | 0.62 | 1.18 | 1.48 | 2.97 | 1.12 | 98.54 |
二甲苯 | 0.76 | 1.23 | 1.50 | 1.56 | 0.88 | 97.64 |
图13 不同温度下产物分子在多级孔ZSM-5分子筛中MSD-t曲线及扩散系数和温度关系
Fig.13 MSD-t profile and graph of Ds and temperature of products in hierarchical ZSM-5 zeolite at different temperatures
图14 含有不同数量甲苯的多级孔ZSM-5分子筛中C3H6和C4H8分子扩散的MSD-t曲线
Fig.14 MSD-t profile of C3H6 and C4H8 molecular in hierarchical ZSM-5 zeolite containing different amounts of toluene
1 | Zhang J, Wu Z, Wu Y F, et al. Catalytic cracking of fatty acid methyl esters for the production of green aromatics using Zn-modified HZSM-5 catalysts[J]. Energy & Fuels, 2022, 36(13): 6922-6938. |
2 | Liu S, Guo Y Q, Sun P Y, et al. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1920. |
3 | Atabani A E, Silitonga A S, Badruddin I A, et al. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2070-2093. |
4 | Chen X B, An Z Y, Wang Y W, et al. Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment[J]. Fuel, 2021, 290: 119798. |
5 | Ishihara A, Takemoto K, Hashimoto T. Aromatics formation by dehydrocyclization-cracking of methyl oleate using ZnZSM-5-alumina composite-supported NiMo sulfide catalysts[J]. Fuel, 2021, 289: 119885. |
6 | Katikaneni S P R, Adjaye J D, Bakhshi N N. Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts[J]. The Canadian Journal of Chemical Engineering, 1995, 73(4): 484-497. |
7 | Coumans A E, Hensen E J M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide[J]. Applied Catalysis B: Environmental, 2017, 201: 290-301. |
8 | Bayat A, Sadrameli S M, Towfighi J. Production of green aromatics via catalytic cracking of Canola Oil Methyl Ester (CME) using HZSM-5 catalyst with different Si/Al ratios[J]. Fuel, 2016, 180: 244-255. |
9 | Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821. |
10 | 安志远. 介孔-中空ZSM-5分子筛的制备及其催化脂肪酸甲酯多产芳烃的研究[D]. 东营: 中国石油大学(华东), 2020. |
An Z Y. Preparation of mesoporous-hollow ZSM-5 zeolites and catalytic aromatic production from fatty acid methyl ester[D].Dongying: China University of Petroleum, 2020. | |
11 | 梁五更. 沸石分子筛中的扩散及其形状选择反应的研究[D]. 北京: 中国科学院山西煤炭化学研究所, 1990. |
Liang W G. Study on diffusion and shape selection reaction in zeolite molecular sieve[D].Beijing: Institute of Coal Chemistry, Chinese Academy of Sciences, 1990. | |
12 | 黄振兴. 活性炭技术基础[M]. 北京: 兵器工业出版社, 2006. |
Huang Z X. Technical Basis of Activated Carbon[M]. Beijing: The Publishing House of Ordnance Industry, 2006. | |
13 | 李先明, 刘姝, 王晓宁. 吸附扩散现象的研究现状及展望[J]. 辽宁石油化工大学学报, 2018, 38(2): 20-25. |
Li X M, Liu S, Wang X N. Research status and prospect of adsorption and diffusion[J]. Journal of Liaoning Shihua University, 2018, 38(2): 20-25. | |
14 | Klemm E, Emig G. A method for the determination of diffusion coefficients in product-shape-selective catalysis on zeolites under reaction conditions[J]. Chemical Engineering Science, 1997, 52(23): 4329-4344. |
15 | Smit B, Maesen T L. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity[J]. Chemical Reviews, 2008, 108(10): 4125-4184. |
16 | Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344. |
17 | Liu Z Q, Chu Y Y, Tang X M, et al. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22872-22882. |
18 | Bu L T, Nimlos M R, Robichaud D J, et al. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite[J]. Catalysis Today, 2018, 312: 73-81. |
19 | Huang L, Chen D, Liu J Q, et al. Aldol condensation reaction in hierarchical ZSM-5 zeolite: a molecular dynamics simulation[J]. Microporous and Mesoporous Materials, 2023, 348: 112393. |
20 | 袁家敏, 刘志强, 郑安民. 分子筛限域扩散机制研究[J]. 化学反应工程与工艺, 2022, 38(2): 175-192. |
Yuan J M, Liu Z Q, Zheng A M. Diffusion mechanism in confined space of zeolite[J]. Chemical Reaction Engineering and Technology, 2022, 38(2): 175-192. | |
21 | Fu D L, Erik Maris J J, Stanciakova K, et al. Unravelling channel structure-diffusivity relationships in zeolite ZSM-5 at the single-molecule level[J]. Angewandte Chemie (International Ed. in English), 2022, 61(5): e202114388. |
22 | Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5[J]. Catalysis Letters, 1991, 11(2): 209-217. |
23 | Gonzales N O, Bell A T, Chakraborty A K. Density functional theory calculations of the effects of local composition and defect structure on the proton affinity of H-ZSM-5[J]. The Journal of Physical Chemistry B, 1997, 101(48): 10058-10064. |
24 | Hansen N, Kerber T, Sauer J, et al. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study[J]. Journal of the American Chemical Society, 2010, 132(33): 11525-11538. |
25 | Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39: 92-96. |
26 | Kleestorfer K, Vinek H, Jentys A. Structure simulation of MCM-41 type materials[J]. Journal of Molecular Catalysis A: Chemical, 2001, 166(1): 53-57. |
27 | Akkermans R L C, Spenley N A, Robertson S H. Monte Carlo methods in Materials Studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164. |
28 | 党宇, 丁雪, 刘熠斌, 等. 吲哚在FAU分子筛中吸附行为的分子模拟研究[J]. 石油炼制与化工, 2017, 48(12): 25-32. |
Dang Y, Ding X, Liu Y B, et al. Molecular simulation of adsorption behavior of indole in FAU zeolites[J]. Petroleum Processing and Petrochemicals, 2017, 48(12): 25-32. | |
29 | 党宇. 多环芳烃在γ-Al2O3上吸附和扩散的分子模拟[D]. 东营: 中国石油大学(华东), 2019. |
Dang Y. Molecular simulation of adsorption and diffusion of polycyclic aromatic hydrocarbons on γ-Al2O3 [D]. Dongying: China University of Petroleum, 2019. | |
30 | Dang Y, Yao Y, Liu Y B, et al. Diffusion properties of aromatic hydrocarbons in mesoporous alumina: a molecular dynamics study[J]. Chemical Engineering Science, 2019, 204: 110-117. |
31 | Duan J D, Chen W, Wang C T, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
32 | 陈丹. 分子筛限域孔道内扩散行为对产物选择性影响的分子动力学研究[D]. 武汉: 武汉工程大学, 2022. |
Chen D. Molecular dynamics study of the effect of zeolite diffusion on product selectivity of confined channel in zeolite[D].Wuhan: Wuhan Institute of Technology, 2022. | |
33 | Yan Z G, Chen D, Huang L, et al. A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2022, 337: 111926. |
34 | 韩明汉, 尹秀艳, 金涌, 等. 改进的ZLC数据处理法: 计算芳烃在ZSM-5晶内扩散系数[J]. 化工学报, 2000, 51(1): 126-129. |
Han M H, Yin X Y, Jin Y, et al. Diffusion of aromatic hydrocarbon in ZSM-5 calculated by improved data treatment of zero length column method[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(1): 126-129. | |
35 | 王斐, 汪文川, 黄世萍, 等. 正丁烷和丁烯-1在不同Si/Al比ZSM-5分子筛上的吸附和扩散行为[J]. 过程工程学报, 2007, 7(4): 661-667. |
Wang F, Wang W C, Huang S P, et al. Adsorption and diffusion behavior of n-butane and butene-1 on ZSM-5 zeolite with different Si/Al ratios and temperatures[J]. The Chinese Journal of Process Engineering, 2007, 7(4): 661-667. | |
36 | 梁五更, 陈诵英, 彭少逸. 芳烃在ZSM-5中吸附和脱附扩散过程的研究[J]. 燃料化学学报, 1991, 19(2): 114-119. |
Liang W G, Chen S Y, Peng S Y. Diffusion of aromatics in adsorption and desorption processes in zsm-5[J]. Journal of Fuel Chemistry and Technology, 1991, 19(2): 114-119. | |
37 | 梁五更, 陈诵英, 彭少逸. 用迎头色谱法测量分子筛中的扩散系数(Ⅱ):苯在M-SiZSM-5中扩散的研究[J]. 石油化工, 1991, 20(4): 268-271. |
Liang W G, Chen S Y, Peng S Y. Measurement of diffusivity in zeolite molecular sieves using frontal gas chromatographic method (Ⅱ): Diffusion of benzene in M-Si-ZSM-5 molecular sieves[J]. Petrochemical Technology, 1991, 20(4): 268-271. | |
38 | 梁五更, 陈诵英, 彭少逸. 苯在ZSM-5分子筛中扩散的研究[J]. 石油化工, 1990, 19(11): 745-748. |
Liang W G, Chen S Y, Peng S Y. Diffusion of benzene in ZSM-5 molecular sieve[J]. Petrochemical Technology, 1990, 19(11): 745-748. | |
39 | Liu Q, He P P, Qian X C, et al. Enhanced CO2 adsorption performance on hierarchical porous ZSM-5 zeolite[J]. Energy & Fuels, 2017, 31(12): 13933-13941. |
40 | 党宇, 李瑞英, 闫昊, 等. 不同碳数脂肪酸甲酯在HZSM-5分子筛中吸附行为的分子模拟[J]. 石油学报(石油加工), 2020, 36(3): 543-550. |
Dang Y, Li R Y, Yan H, et al. Molecular simulations of adsorption of linear fatty acid methyl esters with different carbon numbers in HZSM-5 zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 543-550. | |
41 | Gao S S, Liu Z Q, Xu S T, et al. Cavity-controlled diffusion in 8-membered ring molecular sieve catalysts for shape selective strategy[J]. Journal of Catalysis, 2019, 377: 51-62. |
42 | 党宇, 杨晓东, 刘熠斌, 等. 噻吩、吡咯、呋喃在H-FAU分子筛中吸附和扩散行为的分子模拟[J]. 石油学报(石油加工), 2019, 35(5): 911-919. |
Dang Y, Yang X D, Liu Y B, et al. Molecular simulation of adsorption and diffusion of thiophene, pyrrole and furan in H-FAU zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 911-919. | |
43 | Keyvanloo Z, Nakhaei Pour A, Moosavi F, et al. Molecular dynamic simulation studies of adsorption and diffusion behaviors of methanol and ethanol through ZSM-5 zeolite[J]. Journal of Molecular Graphics & Modelling, 2022, 110: 108048. |
44 | Liu Z Q, Yuan J M, van Baten J M, et al. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites[J]. Science Advances, 2021, 7(11): eabf0775. |
45 | Fu D L, van der Heijden O, Stanciakova K, et al. Disentangling reaction processes of zeolites within single-oriented channels[J]. Angewandte Chemie International Edition, 2020, 59(36): 15502-15506. |
46 | 马会霞, 周峰, 武光, 等. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207. |
Ma H X, Zhou F, Wu G, et al. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. CIESC Journal, 2020, 71(11): 5200-5207. | |
47 | 朱勇晨, 李小华, 张小雷, 等. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803. |
Zhu Y C, Li X H, Zhang X L, et al. Study on regeneration of La modified multistage pore HZSM-5 by NTP and catalytic upgrading of bio-oil[J]. CIESC Journal, 2019, 70(5): 1795-1803. |
[1] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[2] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[3] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[4] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[5] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[6] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[7] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[8] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[9] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
[10] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[11] | 王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411. |
[12] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[13] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[14] | 齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189. |
[15] | 王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||