化工学报 ›› 2024, Vol. 75 ›› Issue (2): 429-438.DOI: 10.11949/0438-1157.20230955
肖拥君(), 时兆翀, 万仁, 宋璠, 彭昌军(
), 刘洪来
收稿日期:
2023-09-13
修回日期:
2024-01-09
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
彭昌军
作者简介:
肖拥君(1998—),女,硕士研究生,xiaoyongjun00@163.com
基金资助:
Yongjun XIAO(), Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG(
), Honglai LIU
Received:
2023-09-13
Revised:
2024-01-09
Online:
2024-02-25
Published:
2024-04-10
Contact:
Changjun PENG
摘要:
以片段活度系数类导体屏蔽模型(COSMO-SAC)获得的电荷密度分布片段面积(Sσ )和空穴体积(VCOSMO)为结构描述符,采用反向传播神经网络构建了可用于预测离子液体中阴阳离子自扩散系数的定量结构-性质关系(QSPR)模型——BP-ANN模型。考察了模型的适用范围与预测能力,并与线性回归得到的QSPR模型(模型I)进行了比较。发现BP-ANN模型适用的离子液体种类较广,模型在阳离子自扩散系数训练集、验证集与测试集中的决定系数R2均大于0.99,在阴离子的三个子集中的R2均大于0.98。阳离子与阴离子预测的平均绝对相对误差分别为2.8%和3.7%。线性回归的QSPR模型对应的值分别为14.54%和14.57%,即BP-ANN模型的预测效果要明显优于基于线性回归建立的模型。
中图分类号:
肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438.
Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks[J]. CIESC Journal, 2024, 75(2): 429-438.
折数 | MSEcation×104 | MSEanion×104 | ||||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | |
1 | 3.19 | 6.05 | 8.78 | 5.36 | 22.1 | 38.3 |
2 | 2.26 | 4.47 | 11.8 | 3.09 | 4.46 | 11.2 |
3 | 7.52 | 8.66 | 17.3 | 1.93 | 3.16 | 14.4 |
4 | 4.00 | 15.0 | 9.73 | 2.33 | 6.27 | 13.4 |
5 | 2.39 | 8.50 | 5.90 | 13.2 | 16.3 | 15.6 |
6 | 12.0 | 9.96 | 18.0 | 8.25 | 9.79 | 39.1 |
7 | 1.88 | 4.27 | 6.90 | 5.71 | 63.5 | 12.8 |
8 | 10.6 | 34.8 | 21.3 | 4.77 | 2.92 | 13.0 |
9 | 1.12 | 2.28 | 9.08 | 41.9 | 109 | 36.6 |
MSE | 5.02 | 10.4 | 12.1 | 9.62 | 26.4 | 21.6 |
表1 建模过程中实验值与计算值之间的MSE汇总
Table 1 Summary of MSE between experimental and calculated values
折数 | MSEcation×104 | MSEanion×104 | ||||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | |
1 | 3.19 | 6.05 | 8.78 | 5.36 | 22.1 | 38.3 |
2 | 2.26 | 4.47 | 11.8 | 3.09 | 4.46 | 11.2 |
3 | 7.52 | 8.66 | 17.3 | 1.93 | 3.16 | 14.4 |
4 | 4.00 | 15.0 | 9.73 | 2.33 | 6.27 | 13.4 |
5 | 2.39 | 8.50 | 5.90 | 13.2 | 16.3 | 15.6 |
6 | 12.0 | 9.96 | 18.0 | 8.25 | 9.79 | 39.1 |
7 | 1.88 | 4.27 | 6.90 | 5.71 | 63.5 | 12.8 |
8 | 10.6 | 34.8 | 21.3 | 4.77 | 2.92 | 13.0 |
9 | 1.12 | 2.28 | 9.08 | 41.9 | 109 | 36.6 |
MSE | 5.02 | 10.4 | 12.1 | 9.62 | 26.4 | 21.6 |
图2 离子液体自扩散系数实验值与BP-ANN模型计算值对比
Fig.2 Comparison between the experimental values of self-diffusion coefficient of ILs and the calculated values of BP-ANN model
项目 | R2 (lnD) | 数据点 | RMSE | AARD /% | |
---|---|---|---|---|---|
阳离子 | 训练集 | 0.9988 | 864 | 0.23 | 2.5 |
验证集 | 0.9978 | 108 | 0.45 | 3.3 | |
测试集 | 0.9943 | 111 | 0.54 | 4.4 | |
总集 | 0.9982 | 1083 | 0.30 | 2.8 | |
阴离子 | 训练集 | 0.9974 | 728 | 0.30 | 3.4 |
验证集 | 0.9965 | 91 | 0.39 | 4.2 | |
测试集 | 0.9853 | 92 | 0.88 | 5.0 | |
总集 | 0.9966 | 911 | 0.41 | 3.7 |
表2 BP-ANN模型的统计参数
Table 2 Statistical parameters of BP-ANN model
项目 | R2 (lnD) | 数据点 | RMSE | AARD /% | |
---|---|---|---|---|---|
阳离子 | 训练集 | 0.9988 | 864 | 0.23 | 2.5 |
验证集 | 0.9978 | 108 | 0.45 | 3.3 | |
测试集 | 0.9943 | 111 | 0.54 | 4.4 | |
总集 | 0.9982 | 1083 | 0.30 | 2.8 | |
阴离子 | 训练集 | 0.9974 | 728 | 0.30 | 3.4 |
验证集 | 0.9965 | 91 | 0.39 | 4.2 | |
测试集 | 0.9853 | 92 | 0.88 | 5.0 | |
总集 | 0.9966 | 911 | 0.41 | 3.7 |
图7 离子液体自扩散系数实验值与不同模型计算值之间的相对偏差箱型图
Fig.7 Box plot representing distributions of relative deviations between experimental self-diffusion coefficients of ILs and the calculated values of two models
IL类型 | 数据点 | 模型Ⅰ[ | BP-ANN 模型 | |||
---|---|---|---|---|---|---|
RMSE | AARD/% | RMSE | AARD/% | |||
阳离子 | 咪唑类 | 690 | 2.4 | 15 | 0.33 | 2.3 |
季铵类 | 184 | 0.61 | 9.5 | 0.20 | 2.9 | |
季![]() | 109 | 0.90 | 20 | 0.22 | 4.0 | |
吡咯类 | 62 | 1.7 | 13 | 0.24 | 3.1 | |
吡啶类 | 8 | 0.93 | 19 | 0.33 | 4.2 | |
其他 | 30 | 0.45 | 8.3 | 0.39 | 7.3 | |
阴离子 | 咪唑类 | 561 | 1.6 | 16 | 0.49 | 3.7 |
季铵类 | 146 | 0.71 | 7.9 | 0.23 | 3.1 | |
季![]() | 109 | 1.1 | 19 | 0.27 | 4.2 | |
吡咯类 | 60 | 2.5 | 14 | 0.24 | 3.7 | |
吡啶类 | 8 | 0.53 | 12 | 0.087 | 4.9 | |
其他 | 27 | 0.24 | 8.6 | 0.15 | 3.2 |
表3 不同种类离子液体自扩散系数实验值与计算值之间RMSE和AARD汇总
Table 3 Summary of RMSE and AARD between the experimental self-diffusion coefficients of different ILs and the calculated values of two models
IL类型 | 数据点 | 模型Ⅰ[ | BP-ANN 模型 | |||
---|---|---|---|---|---|---|
RMSE | AARD/% | RMSE | AARD/% | |||
阳离子 | 咪唑类 | 690 | 2.4 | 15 | 0.33 | 2.3 |
季铵类 | 184 | 0.61 | 9.5 | 0.20 | 2.9 | |
季![]() | 109 | 0.90 | 20 | 0.22 | 4.0 | |
吡咯类 | 62 | 1.7 | 13 | 0.24 | 3.1 | |
吡啶类 | 8 | 0.93 | 19 | 0.33 | 4.2 | |
其他 | 30 | 0.45 | 8.3 | 0.39 | 7.3 | |
阴离子 | 咪唑类 | 561 | 1.6 | 16 | 0.49 | 3.7 |
季铵类 | 146 | 0.71 | 7.9 | 0.23 | 3.1 | |
季![]() | 109 | 1.1 | 19 | 0.27 | 4.2 | |
吡咯类 | 60 | 2.5 | 14 | 0.24 | 3.7 | |
吡啶类 | 8 | 0.53 | 12 | 0.087 | 4.9 | |
其他 | 27 | 0.24 | 8.6 | 0.15 | 3.2 |
1 | Ohno H. Electrochemical Aspects of Ionic Liquids[M]. 2nd ed. Hoboken, NJ: Wiley, 2011. |
2 | Nordness O, Brennecke J F. Ion dissociation in ionic liquids and ionic liquid solutions[J]. Chemical Reviews, 2020, 120(23): 12873-12902. |
3 | Sun L Y, Morales-Collazo O, Xia H, et al. Effect of structure on transport properties (viscosity, ionic conductivity, and self-diffusion coefficient) of aprotic heterocyclic anion (AHA) room temperature ionic liquids(2): Variation of alkyl chain length in the phosphonium cation[J]. The Journal of Physical Chemistry B, 2016, 120(25): 5767-5776. |
4 | Zmpitas J, Gross J. Modified Stokes-Einstein equation for molecular self-diffusion based on entropy scaling[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4453-4459. |
5 | Overbeck V, Schröder H, Bonsa A M, et al. Insights into the translational and rotational dynamics of cations and anions in protic ionic liquids by means of NMR fast-field-cycling relaxometry[J]. Physical Chemistry Chemical Physics, 2021, 23(4): 2663-2675. |
6 | Morris D C, Morris A R, Price W S, et al. Diffusion measurements to understand dynamics and structuring in solutions involving a homologous series of ionic liquids[J]. ChemPhysChem, 2023, 24(11): e202300015. |
7 | 辛绪亮, 张晓冬, 赵宗昌, 等. 离子液体[BMIM]Br的水溶液VLE与扩散系数的分子模拟[J]. 化工学报, 2011, 62(S2): 16-20. |
Xin X L, Zhang X D, Zhao Z C, et al. Molecular simulation of VLE and diffusion coefficient for aqueous solutions of 1-butyl-3-methylimidazolium bromide[J]. CIESC Journal, 2011, 62(S2): 16-20. | |
8 | Kowsari M H, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids(Ⅰ): Dynamics and diffusion coefficient[J]. The Journal of Chemical Physics, 2008, 129(22): 224508. |
9 | Harris K R, Kanakubo M. Self-diffusion, velocity cross-correlation, distinct diffusion and resistance coefficients of the ionic liquid [BMIM][Tf 2N] at high pressure[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23977-23993. |
10 | Harris K R. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts[J]. The Journal of Physical Chemistry B, 2010, 114(29): 9572-9577. |
11 | 张先明, 胡玉峰, 杨振钰, 等. 离子液体的黏度与其扩散系数和电导率的新型关系方程[J]. 中国科学: 化学, 2014, 44(6): 1034-1040. |
Zhang X M, Hu Y F, Yang Z Y, et al. New relations between viscosity and self-diffusion coefficient or conductivity of ionic liquids[J]. Scientia Sinica Chimica, 2014, 44(6): 1034-1040. | |
12 | Rosenfeld Y. Relation between the transport coefficients and the internal entropy of simple systems[J]. Physical Review A, 1977, 15(6): 2545-2549. |
13 | Malvaldi M, Chiappe C. Excess entropy scaling of diffusion in room-temperature ionic liquids[J]. The Journal of Chemical Physics, 2010, 132(24): 244502. |
14 | Hopp M, Mele J L, Gross J. Self-diffusion coefficients from entropy scaling using the PCP-SAFT equation of state[J]. Industrial & Engineering Chemistry Research, 2018, 57(38): 12942-12950. |
15 | Dehlouz A, Jaubert J N, Galliero G, et al. Entropy scaling-based correlation for estimating the self-diffusion coefficients of pure fluids[J]. Industrial & Engineering Chemistry Research, 2022, 61(37): 14033-14050. |
16 | Dyre J C. Perspective: excess-entropy scaling[J]. The Journal of Chemical Physics, 2018, 149(21): 210901. |
17 | Gharagheizi F, Eslamimanesh A, Mohammadi A H, et al. Group contribution model for determination of molecular diffusivity of non-electrolyte organic compounds in air at ambient conditions[J]. Chemical Engineering Science, 2012, 68(1): 290-304. |
18 | Safi A, Nicolas C, Neau E, et al. Diffusion coefficients of organic compounds at infinite dilution in mixtures involving associating compounds. experimental determination and modeling by group contribution methods[J]. Journal of Chemical & Engineering Data, 2008, 53(2): 444-448. |
19 | Zhou J, Chupradit S, Ershov K, et al. Prediction of molecular diffusivity of organic molecules based on group contribution with tree optimization and SVM models[J]. Journal of Molecular Liquids, 2022, 353: 118808. |
20 | Das R N, Roy K. Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future[J]. Molecular Diversity, 2013, 17(1): 151-196. |
21 | Mirkhani S A, Gharagheizi F, Sattari M. A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition[J]. Chemosphere, 2012, 86(9): 959-966. |
22 | Nordness O, Kelkar P, Lyu Y Y, et al. Predicting thermophysical properties of dialkylimidazolium ionic liquids from sigma profiles[J]. Journal of Molecular Liquids, 2021, 334: 116019. |
23 | Allers J P, Garzon F H, Alam T M. Artificial neural network prediction of self-diffusion in pure compounds over multiple phase regimes[J]. Physical Chemistry Chemical Physics, 2021, 23(8): 4615-4623. |
24 | Allers J P, Priest C W, Greathouse J A, et al. Using computationally-determined properties for machine learning prediction of self-diffusion coefficients in pure liquids[J]. The Journal of Physical Chemistry B, 2021, 125(47): 12990-13002. |
25 | Xiao Y J, Song F, An S H, et al. Quantitative structure-property relationship for predicting the diffusion coefficient of ionic liquids[J]. Journal of Molecular Liquids, 2022, 349: 118476. |
26 | Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research[J]. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22(5): 717-727. |
27 | Nami F, Deyhimi F. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network[J]. The Journal of Chemical Thermodynamics, 2011, 43(1): 22-27. |
28 | Paduszyński K. In silico calculation of infinite dilution activity coefficients of molecular solutes in ionic liquids: critical review of current methods and new models based on three machine learning algorithms[J]. Journal of Chemical Information and Modeling, 2016, 56(8): 1420-1437. |
29 | Hakim M, Behmardikalantari G, Abedini Najafabadi H, et al. Prediction of liquid-liquid equilibrium behavior for aliphatic + aromatic + ionic liquid using two different neural network-based models[J]. Fluid Phase Equilibria, 2015, 394: 140-147. |
30 | Delley B. From molecules to solids with the DMol3 approach[J]. The Journal of Chemical Physics, 2000, 113(18): 7756-7764. |
31 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
32 | 霍猛, 彭晓婉, 赵金, 等. 基于COSMO-RS的离子液体吸收CO的溶剂筛选及H2/CO分离实验[J]. 化工学报, 2022, 73(12): 5305-5313. |
Huo M, Peng X W, Zhao J, et al. COSMO-RS based solvent screening and H2/CO separation experiments for CO absorption by ionic liquids[J]. CIESC Journal, 2022, 73(12): 5305-5313. | |
33 | 李明宴, 李进龙, 彭昌军, 等. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
Li M Y, Li J L, Peng C J, et al. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC[J]. CIESC Journal, 2022, 73(3): 1044-1053. | |
34 | Mao Y G, Damodaran K. Ionization dynamics in ionic liquids probed via self-diffusion coefficient measurements[J]. Chemical Physics, 2014, 440: 87-93. |
35 | Fernández A, García J, Torrecilla J S, et al. Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature[J]. Journal of Chemical & Engineering Data, 2008, 53(7): 1518-1522. |
36 | Lemaoui T, Darwish A S, Attoui A, et al. Predicting the density and viscosity of hydrophobic eutectic solvents: towards the development of sustainable solvents[J]. Green Chemistry, 2020, 22(23): 8511-8530. |
37 | Lemaoui T, Darwish A S, El Houda Hammoudi N, et al. Prediction of electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure-property relationship study[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13343-13354. |
[1] | 蒙西, 王岩, 孙子健, 乔俊飞. 基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测[J]. 化工学报, 2024, 75(2): 593-603. |
[2] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[3] | 刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
[4] | 尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365. |
[5] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[6] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[12] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[13] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[14] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[15] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||