化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1855-1869.DOI: 10.11949/0438-1157.20231384
莫锦洪1(), 韩雪1, 朱毅翔1, 李菁2, 王旭裕2(), 纪红兵1,2,3()
收稿日期:
2023-12-28
修回日期:
2024-02-29
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
王旭裕,纪红兵
作者简介:
莫锦洪(1994—),男,硕士研究生,1056732442@qq.com
基金资助:
Jinhong MO1(), Xue HAN1, Yixiang ZHU1, Jing LI2, Xuyu WANG2(), Hongbing JI1,2,3()
Received:
2023-12-28
Revised:
2024-02-29
Online:
2024-05-25
Published:
2024-06-25
Contact:
Xuyu WANG, Hongbing JI
摘要:
正丁烷分子结构相对稳定,C-C键键能较高,难以有效利用,目前大部分作为低价值燃料,通过脱氢、裂解等反应将正丁烷转化为高附加值的轻烯烃研究具有重要的科学意义。采用分步浸渍法将Pt和Ga负载到CeO2-ZrO2-Al2O3 (CZA)载体制备PtGa/CZA催化剂,将Pt-Ga2O3引入作为脱氢位点进行脱氢反应(C4H10→C
中图分类号:
莫锦洪, 韩雪, 朱毅翔, 李菁, 王旭裕, 纪红兵. Pt-Ga/CeO2-ZrO2-Al2O3脱氢裂解双功能催化剂用于正丁烷催化制烯烃研究[J]. 化工学报, 2024, 75(5): 1855-1869.
Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins[J]. CIESC Journal, 2024, 75(5): 1855-1869.
图2 CZA、Ga/CZA-7、Pt/CZA-0.5和PtGa/CZA-x-7催化剂的催化性能与反应温度的关系
Fig.2 Catalytic performance of CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-x-7 catalysts as a function of reaction temperature
文献 | 催化剂 | Pt负载量(质量分数)/% | 质量/g | 反应温度/℃ | 质量空速/h-1 | 转化率/% | 烯烃选择性/% |
---|---|---|---|---|---|---|---|
[ | ADDINPt-Sn/ZSM-5(300) | 0.5 | — | 585 | 3.0 | 38.7 | 约90 |
[ | Pt-0.1ZnO@ZSM-5 | 0.5 | 0.3 | 625 | 0.5 | 约100 | 75 |
[ | ADDINPt/10TiO2/ZSM-5 | 1.0 | 0.3 | 625 | — | 76.1 | 67 |
[ | Pt-Sn/SAPO-34 | 0.5 | — | 585 | 2.8 | 36 | 约92 |
[ | EG-2 | 0.8 | 0.1 | 500 | 54.3 | 约20 | >97 |
[ | Pd-Pt/Al | 1.0 | 0.25 | 600 | 24.9 | 50 | 84 |
[ | Pt/ND@G | 1.0 | — | 450 | 24.0 | 约25 | >95 |
[ | PtSn/Sp-Zn-C | 0.3 | 0.2 | 530 | 6.5 | 约28 | 约96 |
[ | Pt/CNP | 0.3 | 0.2 | 530 | 6.5 | 29 | 92 |
[ | PtSn/CMgO-600 | 1.0 | 0.1 | 550 | 23.5 | 30.6 | 97.5 |
本文 | PtGa/CZA-0.5-7 | 0.5 | 0.2 | 550 | 2.6 | 71.8 | 98.3 |
表1 Pt基催化剂在丁烷脱氢和裂解反应中的性能对比
Table 1 Comparison of the performance of Pt-based catalysts in butane dehydrogenation and cracking
文献 | 催化剂 | Pt负载量(质量分数)/% | 质量/g | 反应温度/℃ | 质量空速/h-1 | 转化率/% | 烯烃选择性/% |
---|---|---|---|---|---|---|---|
[ | ADDINPt-Sn/ZSM-5(300) | 0.5 | — | 585 | 3.0 | 38.7 | 约90 |
[ | Pt-0.1ZnO@ZSM-5 | 0.5 | 0.3 | 625 | 0.5 | 约100 | 75 |
[ | ADDINPt/10TiO2/ZSM-5 | 1.0 | 0.3 | 625 | — | 76.1 | 67 |
[ | Pt-Sn/SAPO-34 | 0.5 | — | 585 | 2.8 | 36 | 约92 |
[ | EG-2 | 0.8 | 0.1 | 500 | 54.3 | 约20 | >97 |
[ | Pd-Pt/Al | 1.0 | 0.25 | 600 | 24.9 | 50 | 84 |
[ | Pt/ND@G | 1.0 | — | 450 | 24.0 | 约25 | >95 |
[ | PtSn/Sp-Zn-C | 0.3 | 0.2 | 530 | 6.5 | 约28 | 约96 |
[ | Pt/CNP | 0.3 | 0.2 | 530 | 6.5 | 29 | 92 |
[ | PtSn/CMgO-600 | 1.0 | 0.1 | 550 | 23.5 | 30.6 | 97.5 |
本文 | PtGa/CZA-0.5-7 | 0.5 | 0.2 | 550 | 2.6 | 71.8 | 98.3 |
图3 CZA、Ga/CZA-7、Pt/CZA-0.5和PtGa/CZA-0.5-7催化剂的X射线衍射谱图和拉曼谱图
Fig.3 X-ray diffraction patterns and Raman spectra of CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-0.5-7 catalysts
图4 CZA、Ga/CZA-7、Pt/CZA-0.5和PtGa/CZA-0.5-7催化剂的N2等温吸脱附曲线和孔径分布
Fig.4 Isothermal N2 adsorption and desorption curves and pore size distributions of CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-0.5-7 catalysts
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 孔径/ nm |
---|---|---|---|
CZA | 93.05 | 0.64 | 27.60 |
Ga/CZA-7 | 88.36 | 0.60 | 25.38 |
Pt/CZA-0.5 | 90.90 | 0.60 | 24.63 |
PtGa/CZA-0.5-7 | 90.04 | 0.57 | 23.51 |
表2 催化剂的比表面积、孔体积和孔径的BET分析
Table 2 BET analysis of specific surface area, pore volume and pore size of catalysts
催化剂 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 孔径/ nm |
---|---|---|---|
CZA | 93.05 | 0.64 | 27.60 |
Ga/CZA-7 | 88.36 | 0.60 | 25.38 |
Pt/CZA-0.5 | 90.90 | 0.60 | 24.63 |
PtGa/CZA-0.5-7 | 90.04 | 0.57 | 23.51 |
图5 CZA、Ga/CZA-7、Pt/CZA-0.5和PtGa/CZA-0.5-7催化剂的微观形貌表征
Fig.5 Micro-morphological characterization of CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-0.5-7 catalysts
催化剂 | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|
CZA | 25.56 | 45.17 |
Ga/CZA-7 | 32.91 | 52.80 |
Pt/CZA-0.5 | 23.79 | 40.18 |
PtGa/CZA-0.5-7 | 26.44 | 46.10 |
表3 CZA、Ga/CZA-7、Pt/CZA-0.5和PtGa/CZA-0.5-7样品的Ce 3d和O 1s数据
Table 3 Ce 3d and O 1s data for CZA, Ga/CZA-7, Pt/CZA-0.5 and PtGa/CZA-0.5-7 samples
催化剂 | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|
CZA | 25.56 | 45.17 |
Ga/CZA-7 | 32.91 | 52.80 |
Pt/CZA-0.5 | 23.79 | 40.18 |
PtGa/CZA-0.5-7 | 26.44 | 46.10 |
催化剂 | H2/C | C2H6/C | CH4/C |
---|---|---|---|
PtGa/CZA-0.1-7 | 2.1 | 0.2 | 0.7 |
PtGa/CZA-0.5-7 | 1.9 | 0.3 | 0.7 |
PtGa/CZA-0.9-7 | 2.0 | 0.4 | 0.7 |
表4 PtGa/CZA-x-7(x=0.1、0.5、0.9)在550℃的正丁烷催化裂解产物的摩尔比
Table 4 Molar ratios of n-butane catalytic cracking products with PtGa/CZA-x-7 (x=0.1, 0.5, 0.9) at 550℃
催化剂 | H2/C | C2H6/C | CH4/C |
---|---|---|---|
PtGa/CZA-0.1-7 | 2.1 | 0.2 | 0.7 |
PtGa/CZA-0.5-7 | 1.9 | 0.3 | 0.7 |
PtGa/CZA-0.9-7 | 2.0 | 0.4 | 0.7 |
图12 PtGa/CZA-Al和PtGa/CZA-0.5-7催化剂的正丁烷催化裂解性能与反应温度和反应时间的关系
Fig.12 n-Butane catalytic cracking performance of PtGa/CZA-Al and PtGa/CZA-0.5-7 catalysts as a function of reaction temperature and reaction time
1 | 陆江银, 赵震, 徐春明. 碳四烷烃催化裂解制低碳烯烃的研究进展[J]. 现代化工, 2004, 24(8): 15-18. |
Lu J Y, Zhao Z, Xu C M. Advances in catalytic cracking butane for production of light olefins[J]. Modern Chemical Industry, 2004, 24(8): 15-18. | |
2 | Rahimi N, Karimzadeh R. Kinetic modeling of catalytic cracking of C4 alkanes over La/HZSM-5 catalysts in light olefin production[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 242-254. |
3 | Cheung T K, Ditri J L, Gates B C. Cracking of n-butane catalyzed by iron- and manganese-promoted sulfated zirconia[J]. Journal of Catalysis, 1995, 153(2): 344-349. |
4 | Harding W D, Kung H H, Kozhevnikov V L, et al. Phase equilibria and butane oxidation studies of the MgO-V2O5-MoO3 system[J]. Journal of Catalysis, 1993, 144(2): 597-610. |
5 | Lu J Y, Zhao Z, Xu C M, et al. FeHZSM-5 molecular sieves-highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199-203. |
6 | Lu J Y, Zhao Z, Xu C M, et al. Catalytic performance of bare supporters and supported KVO3 catalysts for cracking n-butane to produce light olefins[J]. Petroleum science, 2005, 2(1): 52-56. |
7 | Kijima N, Matano K, Saito M, et al. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Applied Catalysis A: General, 2001, 206(2): 237-244. |
8 | Eibl S, Jentoft R E, Gates B C, et al. Conversion of n-pentane and of n-butane catalyzed by platinum-containing WO x /TiO2 [J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2565-2573. |
9 | Kijima N, Matano K, Saito M, et al. Oxidative cracking of n-butane over BiOCl catalyst[J]. Journal of the Japan Petroleum Institute, 2000, 43(1): 89-90. |
10 | Liu X B, Li W Z, Zhu H O, et al. Light alkenes preparation by the gas phase oxidative cracking or catalytic oxidative cracking of high hydrocarbons[J]. Catalysis Letters, 2004, 94(1): 31-36. |
11 | Hu X Y, Li C Y, Yang C H. Catalytic cracking of n-heptane over HZSM-5 catalysts with the activation of lattice oxygen[J]. Catalysis Today, 2010, 158(3/4): 504-509. |
12 | Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction[J]. Applied Catalysis A: General, 2002, 230(1/2): 195-202. |
13 | Maia A J, Oliveira B G, Esteves P M, et al. Isobutane and n-butane cracking on Ni-ZSM-5 catalyst: effect on light olefin formation[J]. Applied Catalysis A: General, 2011, 403(1/2): 58-64. |
14 | Lu J Y, Zhao Z, Xu C M, et al. CrHZSM-5 zeolites-highly efficient catalysts for catalytic cracking of isobutane to produce light olefins[J]. Catalysis Letters, 2006, 109(1): 65-70. |
15 | Han J, Jiang G Y, Han S L, et al. The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane into light olefins and aromatics[J]. Catalysts, 2016, 6(1): 13. |
16 | 张洁, 周明明, 李春义, 等. 异丁烷脱氢裂解制低碳烯烃[J]. 石油炼制与化工, 2013, 44(5): 14-18. |
Zhang J, Zhou M M, Li C Y, et al. Dehydrogenation cracking of i-butane to produce light olefins[J]. Petroleum Processing and Petrochemicals, 2013, 44(5): 14-18. | |
17 | Agula B, Dalai S Q. Mesoporous Ce x Zr1- x O2 mixed oxides supported Cr-V-O nanocatalysts for dehydrogenation of propane to propene[J]. Advanced Materials Research, 2015, 1096: 509-513. |
18 | Narasimharao K, Ali T T. Catalytic oxidative cracking of propane over nanosized gold supported Ce0.5Zr0.5O2 catalysts[J]. Catalysis Letters, 2013, 143(10): 1074-1084. |
19 | Raju G, Reddy B M, Park S E. CO2 promoted oxidative dehydrogenation of n-butane over VO x /MO2-ZrO2 (M=Ce or Ti) catalysts[J]. Journal of CO2 Utilization, 2014, 5: 41-46. |
20 | He Z H, Wu B T, Xia Y, et al. CO2 oxidative dehydrogenation of n-butane to butadiene over CrO x supported on CeZr solid solution[J]. Molecular Catalysis, 2022, 524: 112262. |
21 | Ajumobi O O, Muraza O, Bakare I A, et al. Iron- and cobalt-doped ceria-zirconia nanocomposites for catalytic cracking of naphtha with regenerative capability[J]. Energy & Fuels, 2017, 31(11): 12612-12623. |
22 | Dejhosseini M, Aida T, Watanabe M, et al. Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water[J]. Energy & Fuels, 2013, 27(8): 4624-4631. |
23 | Trovarelli A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4): 439-520. |
24 | Choudhary V R, Rane V H. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons[J]. Journal of Catalysis, 1991, 130(2): 411-422. |
25 | Liu Y, Zhang G H, Liu S D, et al. Promoting n-butane dehydrogenation over PtMn/SiO2 through structural evolution induced by a reverse water-gas shift reaction[J]. ACS Catalysis, 2022, 12(21): 13506-13512. |
26 | Qi L, Zhang Y F, Babucci M, et al. Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets[J]. ACS Catalysis, 2022, 12(18): 11177-11189. |
27 | Ballarini A D, Zgolicz P, Vilella I M J, et al. n-Butane dehydrogenation on Pt, PtSn and PtGe supported on γ-Al2O3 deposited on spheres of α-Al2O3 by washcoating[J]. Applied Catalysis A: General, 2010, 381(1/2): 83-91. |
28 | de Miguel S, Ballarini A, Bocanegra S. New PtSn structured catalysts with ZnAl2O4 thin film for n-butane dehydrogenation reaction[J]. Applied Catalysis A: General, 2020, 590: 117315. |
29 | Deng L D, Miura H, Ohkubo T, et al. The importance of direct reduction in the synthesis of highly active Pt-Sn/SBA-15 for n-butane dehydrogenation[J]. Catalysis Science & Technology, 2019, 9(4): 947-956. |
30 | Nagaraja B M, Jung H, Yang D R, et al. Effect of potassium addition on bimetallic PtSn supported θ-Al2O3 catalyst for n-butane dehydrogenation to olefins[J]. Catalysis Today, 2014, 232: 40-52. |
31 | Zhang J Y, Cai X B, Wu K H, et al. Nanodiamond-core-reinforced, graphene-shell-immobilized platinum nanoparticles as a highly active catalyst for the low-temperature dehydrogenation of n-butane[J]. ChemCatChem, 2018, 10(3): 520-524. |
32 | Nawaz Z, Fei W. Pt-Sn-based SAPO-34 supported novel catalyst for n-butane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7442-7447. |
33 | Bocanegra S A, de Miguel S R, Borbath I, et al. Behavior of bimetallic PtSn/Al2O3 catalysts prepared by controlled surface reactions in the selective dehydrogenation of butane[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 52-60. |
34 | Chen X W, Peng M, Cai X B, et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction[J]. Nature Communications, 2021, 12(1): 2664. |
35 | Zhang B F, Zheng L R, Zhai Z W, et al. Subsurface-regulated PtGa nanoparticles confined in silicalite-1 for propane dehydrogenation[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16259-16266. |
36 | Kwon H C, Park Y, Park J Y, et al. Catalytic interplay of Ga, Pt, and Ce on the alumina surface enabling high activity, selectivity, and stability in propane dehydrogenation[J]. ACS Catalysis, 2021, 11(17): 10767-10777. |
37 | Wang T, Jiang F, Liu G, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2016, 62(12): 4365-4376. |
38 | Chang Q Y, Wang K Q, Hu P, et al. Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: insights from a microkinetic analysis[J]. AIChE Journal, 2020, 66(7): e16232. |
39 | Sattler J J H B, Gonzalez-Jimenez I D, Luo L, et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane[J]. Angewandte Chemie International Edition, 2014, 53(35): 9251-9256. |
40 | Payard P A, Rochlitz L, Searles K, et al. Dynamics and site isolation: keys to high propane dehydrogenation performance of silica-supported PtGa nanoparticles[J]. JACS Au, 2021, 1(9): 1445-1458. |
41 | Wang Y S, Suo Y J, Lv X W, et al. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 593: 304-314. |
42 | Collins S, Finos G, Alcántara R, et al. Effect of gallia doping on the acid-base and redox properties of ceria[J]. Applied Catalysis A: General, 2010, 388(1/2): 202-210. |
43 | Vecchietti J, Collins S, Xu W Q, et al. Surface reduction mechanism of cerium-gallium mixed oxides with enhanced redox properties[J]. The Journal of Physical Chemistry C, 2013, 117(17): 8822-8831. |
44 | Nawaz Z, Qing S, Gao J X, et al. Effect of Si/Al ratio on performance of Pt-Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(1): 57-62. |
45 | Zhang H D, Wu C Y, Wang J L, et al. ZSM-5 zeolite-encapsulated Pt-ZnO bimetallic catalysts for the catalytic cracking of iso-butane[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 833-842. |
46 | 刘佳, 姜桂元, 赵震,等. Pt/TiO2/ZSM-5催化剂的制备及其催化转化正丁烷[J]. 化工学报, 2016, 67(8): 3363-3373. |
Liu J, Jiang G Y, Zhao Z, et al. Preparation of Pt/TiO2/ZSM-5 catalyst for catalytic conversion of n-butane[J]. CIESC Journal, 2016, 67(8): 3363-3373. | |
47 | Shao M Y, Hu C Q, Xu X B, et al. Pt/TS-1 catalysts: effect of the platinum loading method on the dehydrogenation of n-butane[J]. Applied Catalysis A: General, 2021, 621: 118194. |
48 | Saxena R, De M. Enhanced performance of supported Pd-Pt bimetallic catalysts prepared by modified electroless deposition for butane dehydrogenation[J]. Applied Catalysis A: General, 2021, 610: 117933. |
49 | Ballarini A, Bocanegra S, Mendez J, et al. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins[J]. Inorganic Chemistry Communications, 2022, 142: 109638. |
50 | Shashikala V, Jung H, Shin C, et al. n-Butane dehydrogenation on PtSn/carbon modified MgO catalysts[J]. Catalysis Letters, 2013, 143(7): 651-656. |
51 | Morikawa A, Suzuki T, Kanazawa T, et al. A new concept in high performance ceria-zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 210-221. |
52 | Osaki T. Activity-determining factors for catalytic CO and CH4 oxidation on Pt/CeO2-ZrO2-Al2O3 cryogels[J]. Research on Chemical Intermediates, 2020, 46(6): 3125-3143. |
53 | Andonova S, Ok Z A, Drenchev N, et al. Pt/CeO x /ZrO x /γ-Al2O3 ternary mixed oxide deNO x catalyst: surface chemistry and NO x interactions[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12850-12863. |
54 | Li S S, He J S, Dan Y, et al. Bifunctional roles of Nd2O3 on improving the redox property of CeO2-ZrO2-Al2O3 materials[J]. Materials Chemistry and Physics, 2020, 240: 122150. |
55 | Chen K, Wan J, Lin J S, et al. Comparative study of three-way catalytic performance over Pd/CeO2-ZrO2-Al2O3 and Pd/La-Al2O3 catalysts: new insights into microstructure and thermal stability[J]. Molecular Catalysis, 2022, 526: 112361. |
56 | Usharani S, Rajendran V. Synthesis and characterization of surfactant assisted CeO2/ZrO2 nanocomposite[J]. International Journal of Pure and Applied Physics, 2016, 12(1): 53-60. |
57 | Ibrahim M M, El-Molla S A, Ismail S A. Influence of γ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications[J]. Journal of Molecular Structure, 2018, 1158: 234-244. |
58 | Ibrahim M M. An efficient nano-adsorbent via surfactants/dual surfactants assisted ultrasonic co-precipitation method for sono-removal of monoazo and diazo anionic dyes[J]. Chinese Journal of Chemical Engineering, 2021, 40: 225-236. |
59 | Panahi-Kalamuei M, Alizadeh S, Mousavi-Kamazani M, et al. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1301-1305. |
60 | Zhao Q, Wang Y, Li G Y, et al. CeZrO x promoted water-gas shift reaction under steam-methane reforming conditions on Ni-HTASO5[J]. Catalysts, 2020, 10(10): 1110. |
61 | Wang Z Y, He Z H, Xia Y, et al. Oxidative dehydrogenation of propane to propylene in the presence of CO2 over gallium nitride supported on NaZSM-5[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 2807-2817. |
62 | Wang G W, Zhu X L, Li C Y. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes[J]. The Chemical Record, 2020, 20(6): 604-616. |
63 | Deng J, Zhou Y, Cui Y J, et al. The influence of H2O2 on the properties of CeO2-ZrO2 mixed oxides[J]. Journal of Materials Science, 2017, 52(9): 5242-5255. |
64 | Wang J Q, Shen M Q, Wang J, et al. Effect of cobalt doping on ceria-zirconia mixed oxide: structural characteristics, oxygen storage/release capacity and three-way catalytic performance[J]. Journal of Rare Earths, 2012, 30(9): 878-883. |
65 | Quaino P, Syzgantseva O, Siffert L, et al. Unravelling the enhanced reactivity of bulk CeO2 doped with gallium: a periodic DFT study[J]. Chemical Physics Letters, 2012, 519/520: 69-72. |
66 | Tan W, Xie S H, Wang X, et al. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust[J]. Chemical Engineering Journal, 2021, 426: 131855. |
67 | Deng C S, Li B, Dong L H, et al. NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2 [J]. Physical Chemistry Chemical Physics, 2015, 17(24): 16092-16109. |
68 | Sellick D R, Aranda A, García T, et al. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Applied Catalysis B: Environmental, 2013, 132/133: 98-106. |
69 | Li S S, Wang W, Zhao Y, et al. Correlation between the morphology of NH4Al(OH)2CO3 and the properties of CeO2-ZrO2/Al2O3 material[J]. Materials Chemistry and Physics, 2021, 266: 124552. |
70 | Zhou S L, Gao L Y, Wei F F, et al. On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria[J]. Journal of Catalysis, 2019, 375: 410-418. |
71 | Kunwar D, Zhou S L, DeLaRiva A, et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support[J]. ACS catalysis, 2019, 9(5): 3978-3990. |
72 | Krannila H, Haag W O, Gates B C. Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5[J]. Journal of Catalysis, 1992, 135(1): 115-124. |
73 | 张执刚.反应压力对催化裂解工艺的影响及反应机理研究[J].炼油技术与工程,2010, 40(3): 6-9. |
Zhang J G. Impact of reaction pressure on deep catalytic cracking process and research of reaction mechanisms[J]. Petroleum Refinery Engineering, 2010, 40(3): 6-9. |
[1] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[2] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[3] | 范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
[4] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[5] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[6] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[7] | 韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
[8] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[9] | 程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117. |
[10] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[11] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[12] | 李俊, 赵亮, 高金森, 徐春明. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080. |
[13] | 巨晓洁, 宋婉璐, 周宸宇, 沈秋彤, 廖雨田, 龚珏颖, 褚良银. 纳米药物载体用于治疗胞内菌感染的研究进展[J]. 化工学报, 2024, 75(4): 1153-1166. |
[14] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[15] | 陈志明, 王泽凤, 马高琪, 王良波, 余承涛, 潘鹏举. 基于亚锡灭活及链端改性提高聚乳酸热稳定性的研究进展[J]. 化工学报, 2024, 75(3): 760-767. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||