化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2143-2156.DOI: 10.11949/0438-1157.20240080
收稿日期:
2024-01-16
修回日期:
2024-04-07
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
郑楠
作者简介:
李子扬(2002—),男,硕士研究生,ziyangli@stu.xjtu.edu.cn
基金资助:
Ziyang LI(), Nan ZHENG(
), Jiabin FANG, Jinjia WEI
Received:
2024-01-16
Revised:
2024-04-07
Online:
2024-06-25
Published:
2024-07-03
Contact:
Nan ZHENG
摘要:
结合储热的太阳能热发电技术输出稳定、调峰能力强,引入超临界二氧化碳(S-CO2)布雷顿循环可进一步提升热电转换效率。既有研究大多采用单一指标对S-CO2循环进行性能评估,结果相对片面,因而有必要开展多指标综合性能评价以客观反映循环性能状况。建立了35 MW再压缩式S-CO2循环的热力学和经济性模型,考察了关键参数对循环性能的影响。构建了反向传播神经网络结合遗传算法的优化方法(BP-GA),对循环性能进行多目标优化。结果表明,回热器总热导率的增加可提升循环效率,但存在上限;透平入口温度、循环最低和最高压力、分流比与循环性能分别存在显著的非单调作用关系,优化后的设计值依次为639.14℃、8.10 MPa、29.74 MPa和0.70。与初始设计值下的循环性能相比,优化后的循环系统度电成本降低了11.1%,循环热效率和比功分别提高了5.1%和27.6%。
中图分类号:
李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156.
Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle[J]. CIESC Journal, 2024, 75(6): 2143-2156.
参数 | 数值 |
---|---|
主压缩机入口温度CIT/℃ | 35 |
循环最低压力pmin /MPa | 7.5 |
循环最高压力pmax /MPa | 25 |
低压透平入口压力pmid /MPa | 16.25 |
高/低压透平入口温度TIT/℃ | 650 |
压缩机等熵效率ηs,c /%[ | 89 |
透平等熵效率ηs,t /%[ | 93 |
分流比SR | 0.65 |
高温回热器的热导率占比UAR/% | 50 |
回热器总热导率UA /(MW/K) | 20 |
输出功Wnet /MW | 35 |
表1 系统分析的初始设计参数
Table 1 Initial design parameters for system analysis
参数 | 数值 |
---|---|
主压缩机入口温度CIT/℃ | 35 |
循环最低压力pmin /MPa | 7.5 |
循环最高压力pmax /MPa | 25 |
低压透平入口压力pmid /MPa | 16.25 |
高/低压透平入口温度TIT/℃ | 650 |
压缩机等熵效率ηs,c /%[ | 89 |
透平等熵效率ηs,t /%[ | 93 |
分流比SR | 0.65 |
高温回热器的热导率占比UAR/% | 50 |
回热器总热导率UA /(MW/K) | 20 |
输出功Wnet /MW | 35 |
系统部件 | 能量关系 |
---|---|
高压透平 | |
低压透平 | |
主压缩机 | |
再压缩机 | |
混合过程 | |
高温回热器 | |
低温回热器 | |
主加热器 | |
再热器 | |
冷却器 | |
净功 |
表2 再压缩循环各部件的能量关系
Table 2 Energy relations of main devices in recompression cycle
系统部件 | 能量关系 |
---|---|
高压透平 | |
低压透平 | |
主压缩机 | |
再压缩机 | |
混合过程 | |
高温回热器 | |
低温回热器 | |
主加热器 | |
再热器 | |
冷却器 | |
净功 |
参数名称 | 数值 |
---|---|
循环最高压力pmax /MPa | 25 |
透平入口温度TIT/℃ | 650 |
主压缩机入口温度CIT /℃ | 50 |
透平等熵效率ηs,t /% | 93 |
压缩机等熵效率ηs,c /% | 89 |
输出功Wnet/MW | 35 |
回热器总热导率UA/(MW/K) | 变化值 |
表3 模型验证的参数设置[30]
Table 3 Parameter settings for model validation[30]
参数名称 | 数值 |
---|---|
循环最高压力pmax /MPa | 25 |
透平入口温度TIT/℃ | 650 |
主压缩机入口温度CIT /℃ | 50 |
透平等熵效率ηs,t /% | 93 |
压缩机等熵效率ηs,c /% | 89 |
输出功Wnet/MW | 35 |
回热器总热导率UA/(MW/K) | 变化值 |
UA/ (MW/K) | η/% | ΔTMH/℃ | ||||
---|---|---|---|---|---|---|
文献 | 本文 | 误差 | 文献 | 本文 | 误差 | |
5 | 47.17 | 47.17 | 0 | 138 | 137.98 | 0.01% |
10 | 50.39 | 50.39 | 0 | 114.2 | 114.16 | 0.04% |
15 | 51.59 | 51.58 | 0.02% | 109.5 | 109.0 | 0.46% |
表4 本文的模型结果和文献[30]结果比较
Table 4 Comparison of model results in this work and literature[30] results
UA/ (MW/K) | η/% | ΔTMH/℃ | ||||
---|---|---|---|---|---|---|
文献 | 本文 | 误差 | 文献 | 本文 | 误差 | |
5 | 47.17 | 47.17 | 0 | 138 | 137.98 | 0.01% |
10 | 50.39 | 50.39 | 0 | 114.2 | 114.16 | 0.04% |
15 | 51.59 | 51.58 | 0.02% | 109.5 | 109.0 | 0.46% |
系统组件 | 成本函数 | 单位 | 年(CEPCI) |
---|---|---|---|
压缩机 | Ccom=49511.08 Wcom0.7865 | CNY | 2003(402.0) |
透平 | Ctur=55913.50 Wtur0.6842 | CNY | 2003(402.0) |
回热器 | Crecup=8.9720 UArecup | CNY | 1994(368.1) |
加热器 | Cheater=25.1216 UAheater | CNY | 1994(368.1) |
冷却器 | Ccooler=16.5085 UAcooler | CNY | 1994(368.1) |
表5 主要组成部件的成本函数[36]
Table 5 Cost functions of main components[36]
系统组件 | 成本函数 | 单位 | 年(CEPCI) |
---|---|---|---|
压缩机 | Ccom=49511.08 Wcom0.7865 | CNY | 2003(402.0) |
透平 | Ctur=55913.50 Wtur0.6842 | CNY | 2003(402.0) |
回热器 | Crecup=8.9720 UArecup | CNY | 1994(368.1) |
加热器 | Cheater=25.1216 UAheater | CNY | 1994(368.1) |
冷却器 | Ccooler=16.5085 UAcooler | CNY | 1994(368.1) |
优化目标 | R2 | MSE | 训练总耗时/s | Epoch |
---|---|---|---|---|
η | 0.99998 | 3.14×10-6 | 6.36 | 228 |
w | 0.99999 | 4.54×10-7 | 8.31 | 289 |
LCOE | 0.99804 | 3.79×10-5 | 2.19 | 76 |
表6 神经网络性能指标
Table 6 Performance of neural network
优化目标 | R2 | MSE | 训练总耗时/s | Epoch |
---|---|---|---|---|
η | 0.99998 | 3.14×10-6 | 6.36 | 228 |
w | 0.99999 | 4.54×10-7 | 8.31 | 289 |
LCOE | 0.99804 | 3.79×10-5 | 2.19 | 76 |
参数 | 下限 | 上限 |
---|---|---|
透平入口温度TIT/℃ | 500 | 650 |
主压缩机入口温度CIT/℃ | 32 | 52 |
循环最低压力Pmin/MPa | 7.5 | 10.0 |
循环最高压力Pmax/MPa | 15 | 30 |
分流比SR | 0.45 | 0.95 |
表7 决策变量范围
Table 7 Range of decision variables
参数 | 下限 | 上限 |
---|---|---|
透平入口温度TIT/℃ | 500 | 650 |
主压缩机入口温度CIT/℃ | 32 | 52 |
循环最低压力Pmin/MPa | 7.5 | 10.0 |
循环最高压力Pmax/MPa | 15 | 30 |
分流比SR | 0.45 | 0.95 |
参数 | 初始值 | 优化后 | 相对变化 |
---|---|---|---|
TIT/℃ | 650 | 639.14 | -1.67% |
CIT/℃ | 35 | 32.33 | -7.6% |
pmin /MPa | 7.5 | 8.10 | +8% |
pmax /MPa | 25 | 29.74 | +19.0% |
SR | 0.65 | 0.70 | +7.7% |
η/% | 52.23 | 54.90 | +5.1% |
w/(kW/kg) | 121.37 | 154.91 | +27.6% |
LCOE/(CNY/(kW·h)) | 1.0694 | 0.9506 | -11.1% |
表8 RCRHC循环参数多目标优化结果
Table 8 Multi-objective optimization results of RCRHC cycle parameters
参数 | 初始值 | 优化后 | 相对变化 |
---|---|---|---|
TIT/℃ | 650 | 639.14 | -1.67% |
CIT/℃ | 35 | 32.33 | -7.6% |
pmin /MPa | 7.5 | 8.10 | +8% |
pmax /MPa | 25 | 29.74 | +19.0% |
SR | 0.65 | 0.70 | +7.7% |
η/% | 52.23 | 54.90 | +5.1% |
w/(kW/kg) | 121.37 | 154.91 | +27.6% |
LCOE/(CNY/(kW·h)) | 1.0694 | 0.9506 | -11.1% |
项目 | η/% | w/(kW/kg) | LCOE/(CNY/(kW·h)) |
---|---|---|---|
优化后结果 | 54.90 | 154.91 | 0.9506 |
迭代程序计算结果 | 54.87 | 154.51 | 0.9498 |
相对误差 | 0.06% | 0.26% | 0.08% |
表9 多目标优化结果验证
Table 9 Validation of multi-objective optimization results
项目 | η/% | w/(kW/kg) | LCOE/(CNY/(kW·h)) |
---|---|---|---|
优化后结果 | 54.90 | 154.91 | 0.9506 |
迭代程序计算结果 | 54.87 | 154.51 | 0.9498 |
相对误差 | 0.06% | 0.26% | 0.08% |
1 | 国家能源局. 国家能源局2023年一季度新闻发布会文字实录[EB/OL]. [2023-08-15]. . |
National Energy Administration. Text transcript of the National Energy Administration's news release conference in the first quarter of 2023[EB/OL]. [2023-08-15]. . | |
2 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
3 | White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. |
4 | Rogalev N, Rogalev A, Kindra V, et al. Review of closed SCO2 and semi-closed oxy-fuel combustion power cycles for multi-scale power generation in terms of energy, ecology and economic efficiency[J]. Energies, 2022, 15(23): 9226. |
5 | Wu D C, Wei M S, Tian R, et al. A review of flow and heat transfer characteristics of supercritical carbon dioxide under cooling conditions in energy and power systems[J]. Energies, 2022, 15(23): 8785. |
6 | Marchionni M, Bianchi G, Tassou S A. Review of supercritical carbon dioxide (sCO2) technologies for high-grade waste heat to power conversion[J]. SN Applied Sciences, 2020, 2(4): 611. |
7 | 孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
Sun M Z, Ma N, Li H R, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388. | |
8 | Yin J M, Zheng Q Y, Peng Z R, et al. Review of supercritical CO2 power cycles integrated with CSP[J]. International Journal of Energy Research, 2020, 44(3): 1337-1369. |
9 | Fan Y H, Tang G H, Li X L, et al. General and unique issues at multiple scales for supercritical carbon dioxide power system: a review on recent advances[J]. Energy Conversion and Management, 2022, 268: 115993. |
10 | Xu J L, Liu C, Sun E H, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831. |
11 | Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation: a review[J]. Applied Energy, 2017, 195: 152-183. |
12 | Dunham M T, Iverson B D. High-efficiency thermodynamic power cycles for concentrated solar power systems[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 758-770. |
13 | Dyreby J, Klein S, Nellis G, et al. Design considerations for supercritical carbon dioxide Brayton cycles with recompression[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10): 101701. |
14 | Reyes-Belmonte M A, Sebastián A, Romero M, et al. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant[J]. Energy, 2016, 112: 17-27. |
15 | Zheng N, Li Z Y, Fang J B, et al. Supercritical CO2 mixture Brayton cycle with floating critical points for concentrating solar power application: concept and thermodynamic analysis[J]. Energy Conversion and Management, 2023, 284: 116989. |
16 | Al-Sulaiman F A, Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J]. Energy, 2015, 82: 61-71. |
17 | 赵柄锡, 袁奇, 朱光宇. 多目标超临界CO2循环设计与优化[J]. 中国电机工程学报, 2018, 38(7): 2046-2054, 2219. |
Zhao B X, Yuan Q, Zhu G Y. Multi-objective designing and optimization of Rankine cycle using supercritical CO2 [J]. Proceedings of the CSEE, 2018, 38(7): 2046-2054, 2219. | |
18 | Zhou T, Liu Z X, Li X J, et al. Thermodynamic design space data-mining and multi-objective optimization of SCO2 Brayton cycles[J]. Energy Conversion and Management, 2021, 249: 114844. |
19 | Liang Y Z, Chen J S, Yang Z, et al. Economic-environmental evaluation and multi-objective optimization of supercritical CO2 based-central tower concentrated solar power system with thermal storage[J]. Energy Conversion and Management, 2021, 238: 114140. |
20 | Ma Y N, Hu P, Jia C Q, et al. Thermo-economic analysis and multi-objective optimization of supercritical Brayton cycles with CO2-based mixtures[J]. Applied Thermal Engineering, 2023, 219: 119492. |
21 | 余廷芳, 宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414. |
Yu T F, Song L. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(2): 404-414. | |
22 | 曹越, 陈然璟, 展君, 等. 基于神经网络的燃气-超临界CO2联合循环变工况特性快速预测及优化[J]. 中国电机工程学报, 2023, 43(11): 4178-4190. |
Cao Y, Chen R J, Zhan J, et al. Rapid prediction and optimization for off-design performance of gas and supercritical carbon dioxide combined cycle based on neural network[J]. Proceedings of the CSEE, 2023, 43(11): 4178-4190. | |
23 | 肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011, 28(3): 805-808, 827. |
Xiao X W, Xiao D, Lin J G, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computers, 2011, 28(3): 805-808, 827. | |
24 | Li Q, Erqi E, Qiu Y, et al. Conceptual design of novel He-SCO2 Brayton cycles for ultra-high-temperature concentrating solar power[J]. Energy Conversion and Management, 2022, 260: 115618. |
25 | Wang K, Li M J, Guo J Q, et al. A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J]. Applied Energy, 2018, 212: 109-121. |
26 | Li H, Su W, Cao L Y, et al. Preliminary conceptual design and thermodynamic comparative study on vapor absorption refrigeration cycles integrated with a supercritical CO2 power cycle[J]. Energy Conversion and Management, 2018, 161: 162-171. |
27 | Tang J R, Zhang Q G, Zhang Z P, et al. Development and performance assessment of a novel combined power system integrating a supercritical carbon dioxide Brayton cycle with an absorption heat transformer[J]. Energy Conversion and Management, 2022, 251: 114992. |
28 | Qiu Y, Erqi E, Li Q. Triple-objective optimization of SCO2 Brayton cycles for next-generation solar power tower[J]. Energies, 2023, 16(14): 5316. |
29 | Lemmon E, McLinden M, Huber M. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 9.1[DB/OL]. Gaithersburg, MD: Natl Std. Ref. Data Series (NIST NSRDS), National Institute of Standards and Technology, 2013[2024-01-13]. . |
30 | Neises T, Turchi C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49: 1187-1196. |
31 | Kulhánek M, Dostál V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles[C]//Proceedings of Supercritical CO2 Power Cycle Symposium. Boulder, Colorado, USA, 2011. |
32 | Mecheri M, Le Moullec Y. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771. |
33 | Yang J Z, Yang Z, Duan Y Y. Part-load performance analysis and comparison of supercritical CO2 Brayton cycles[J]. Energy Conversion and Management, 2020, 214: 112832. |
34 | Na S I, Kim M S, Baik Y J, et al. Optimal allocation of heat exchangers in a supercritical carbon dioxide power cycle for waste heat recovery[J]. Energy Conversion and Management, 2019, 199: 112002. |
35 | Mohagheghi M, Kapat J. Thermodynamic optimization of recuperated S-CO2 Brayton cycles for solar tower applications[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. San Antonio, Texas, USA, 2013. |
36 | Carlson M D, Middleton B M, Ho C K. Techno-economic comparison of solar-driven SCO2 Brayton cycles using component cost models baselined with vendor data and estimates[C]//Proceedings of ASME 2017 11th International Conference on Energy Sustainability Collocated with the ASME 2017 Power Conference Joint with ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. Charlotte, North Carolina, USA, 2017 |
37 | Engineering Chemical. 2023 CEPCI updates: July (prelim.) and June (final)[EB/OL]. [2023-10-15]. . |
38 | Khodaei E, Yari M, Mohammad S Mahmoudi S. Thermoeconomic optimization for a solar power generating system capable of storing energy by using calcium looping process[J]. Energy Conversion and Management, 2023, 293: 117403. |
[1] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[2] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
[3] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[4] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[5] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[6] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[7] | 周辛梓, 李增辉, 孟现阳, 吴江涛. 低温下高纯空气黏度实验研究[J]. 化工学报, 2024, 75(3): 782-788. |
[8] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
[9] | 张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119. |
[10] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[11] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[12] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[13] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[14] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[15] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||