化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2143-2156.DOI: 10.11949/0438-1157.20240080

• 热力学 • 上一篇    下一篇

再压缩S-CO2布雷顿循环性能分析及多目标优化

李子扬(), 郑楠(), 方嘉宾, 魏进家   

  1. 西安交通大学化学工程与技术学院,陕西 西安 710049
  • 收稿日期:2024-01-16 修回日期:2024-04-07 出版日期:2024-06-25 发布日期:2024-07-03
  • 通讯作者: 郑楠
  • 作者简介:李子扬(2002—),男,硕士研究生,ziyangli@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52006163)

Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle

Ziyang LI(), Nan ZHENG(), Jiabin FANG, Jinjia WEI   

  1. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-01-16 Revised:2024-04-07 Online:2024-06-25 Published:2024-07-03
  • Contact: Nan ZHENG

摘要:

结合储热的太阳能热发电技术输出稳定、调峰能力强,引入超临界二氧化碳(S-CO2)布雷顿循环可进一步提升热电转换效率。既有研究大多采用单一指标对S-CO2循环进行性能评估,结果相对片面,因而有必要开展多指标综合性能评价以客观反映循环性能状况。建立了35 MW再压缩式S-CO2循环的热力学和经济性模型,考察了关键参数对循环性能的影响。构建了反向传播神经网络结合遗传算法的优化方法(BP-GA),对循环性能进行多目标优化。结果表明,回热器总热导率的增加可提升循环效率,但存在上限;透平入口温度、循环最低和最高压力、分流比与循环性能分别存在显著的非单调作用关系,优化后的设计值依次为639.14℃、8.10 MPa、29.74 MPa和0.70。与初始设计值下的循环性能相比,优化后的循环系统度电成本降低了11.1%,循环热效率和比功分别提高了5.1%和27.6%。

关键词: 超临界二氧化碳, 再压缩布雷顿循环, 遗传算法, 整体优化, 热力学

Abstract:

The solar thermal power generation technology combined with heat storage has stable output and strong peak shaving capabilities. The introduction of supercritical carbon dioxide (S-CO2) Brayton cycle can further improve thermoelectric conversion efficiency. Most of the existing studies evaluated the performance of S-CO2 cycle based on a single index, leading to inconsistent evaluation results. Hence, it is necessary to carry out multi-index comprehensive evaluation to objectively reflect the cycle performance. In the present paper, mathematical models were established to investigate the thermodynamic performance and economy of a 35 MW recompression S-CO2 cycle, and the effects of critical parameters on cycle performance was analyzed. A BP-GA optimization method of back propagation neural network combined with elitist nondominated sorting genetic algorithm was constructed for multi-objective optimization of cycle performance. The results indicate that the cycle efficiency increases with an increasing total thermal conductivity of the recuperators, but there is a ceiling on growth. There are significant non-monotonic relations between turbine inlet temperature, minimum cycle pressure, maximum cycle pressure, split ratio and cycle performance, and the corresponding optimal values are 639.14℃, 8.10 MPa, 29.74 MPa and 0.70, respectively. Compared with the cycle performance based on the design conditions, the optimized cycle shows a reduction of 11.1% in LCOE, and an increase of 5.1% and 27.6% in efficiency and specific work, respectively.

Key words: supercritical carbon dioxide, recompression Brayton cycle, genetic algorithm, global optimization, thermodynamics

中图分类号: