1 |
张冬, 乔京京, 李曼, 等. 乳腺癌脑转移预后风险分析[J]. 现代肿瘤医学, 2017, 25(7): 1073-1077.
|
|
Zhang D, Qiao J J, Li M, et al. Breast cancer brain metastases: clinical characteristics and prognosis[J]. Journal of Modern Oncology, 2017, 25(7): 1073-1077.
|
2 |
Quan X B, Peng C W, Zhao D H, et al. Molecular understanding of the penetration of functionalized gold nanoparticles into asymmetric membranes[J]. Langmuir, 2017, 33(1): 361-371.
|
3 |
苏运祥, 全学波, 闵文凤, 等. PAMAM树状大分子负载和释放阿霉素的耗散粒子动力学模拟[J]. 化工学报, 2017, 68(5): 1757-1766.
|
|
Su Y X, Quan X B, Min W F, et al. Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers[J]. CIESC Journal, 2017, 68(5): 1757-1766.
|
4 |
Zhang P Z, Jiao F F, Xie Z X, et al. Theoretical investigation of the mechanism of phospholipid extraction from the cell membrane using functionalized graphene quantum dots [J]. Materials Advances, 2022, 3(15): 6161-6170.
|
5 |
周梦迪, 沈嘉炜, 梁立军, 等. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
|
|
Zhou M D, Shen J W, Liang L J, et al. Advances in computer simulation of graphene biotoxicity[J]. CIESC Journal, 2020, 71(1): 148-165.
|
6 |
刘洪超, 陈苏航, 段先力, 等. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
|
|
Liu H C, Chen S H, Duan X L, et al. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation[J]. CIESC Journal, 2022, 73(7): 2835-2843.
|
7 |
Song X Y, Liu H C, Duan X L, et al. Self-propelled cellular translocation of Janus-shaped graphene quantum dots: a molecular dynamics simulation and thermodynamic analysis[J]. Applied Surface Science, 2023, 609: 155425.
|
8 |
Torad N L, Li Y Q, Ishihara S, et al. MOF-derived nanoporous carbon as intracellular drug delivery carriers[J]. Chemistry Letters, 2014, 43(5): 717-719.
|
9 |
Guo L N, Chen Y, Wang T, et al. Rational design of metal-organic frameworks to deliver methotrexate for targeted rheumatoid arthritis therapy[J]. Journal of Controlled Release, 2021, 330: 119-131.
|
10 |
Sun C Y, Qin C, Wang C G, et al. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery[J]. Advanced Materials, 2011, 23(47): 5629-5632.
|
11 |
Dong J H, Ma Y, Li R, et al. Smart MSN-drug-delivery system for tumor cell targeting and tumor microenvironment release[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42522-42532.
|
12 |
Scicluna M C, Vella-Zarb L. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems[J]. ACS Applied Nano Materials, 2020, 3(4): 3097-3115.
|
13 |
Chen R F, Shi J L, Ma Y, et al. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(19): 6430-6434.
|
14 |
Dong J Q, Pan Y T, Yang K W, et al. Enhanced biological imaging via aggregation-induced emission active porous organic cages[J]. ACS Nano, 2022, 16(2): 2355-2368.
|
15 |
Tozawa T, Jones J T A, Swamy S I, et al. Porous organic cages[J]. Nature Materials, 2009, 8(12): 973-978.
|
16 |
Yang X C, Ullah Z, Stoddart J F, et al. Porous organic cages[J]. Chemical Reviews, 2023, 123(8): 4602-4634.
|
17 |
崔文政, 沈照杰, 毛东旭, 等. 纳米流体中纳米颗粒微运动的分子动力学模拟[J]. 化工学报, 2017, 68(S1): 48-53.
|
|
Cui W Z, Shen Z J, Mao D X, et al. Micro-movements of nanoparticles in nanofluids: molecular dynamics simulation[J]. CIESC Journal, 2017, 68(S1): 48-53.
|
18 |
龚铭城, 周良良, 马欣悦, 等. 分子模拟在纳米载药材料中的应用研究进展[J]. 高分子通报, 2022(8): 21-28.
|
|
Gong M C, Zhou L L, Ma X Y, et al. Research progress in the application of molecular simulation in nanoscale drug carriers[J]. Polymer Bulletin, 2022(8): 21-28.
|
19 |
李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360.
|
|
Li J C, Yu B, Wang Q, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360.
|
20 |
Pierluigi S, Stefania M, Roberta G, et al. Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations[J]. European Polymer Journal, 2021, 147: 110292.
|
21 |
Lee H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications[J]. Pharmaceutics, 2020, 12(6): 533
|
22 |
Zhao B R, Li B. Molecular simulation of hopping mechanisms of nanoparticles in regular cross-linked polymer networks[J]. The Journal of Chemical Physics, 2022, 157(10): 104901
|
23 |
吉远辉, 陈俏, 翁靖云. 聚合物辅料对阿司匹林结晶动力学影响机制的非平衡热力学建模及预测[J]. 化工学报, 2021, 72(1): 508-520.
|
|
Ji Y H, Chen Q, Weng J Y. Nonequilibrium thermodynamic modeling and prediction of the effect of polymer excipients on aspirin crystallization kinetics[J]. CIESC Journal, 2021, 72(1): 508-520.
|
24 |
汤朝晖, 陈学思. 聚谷氨酸接枝聚乙二醇抗肿瘤药物靶向输送系统[J]. 高分子学报, 2019, 50(6): 543-552.
|
|
Tang Z H, Chen X S. Tumor-targeting drug delivery systems based on poly(L-glutamic acid)-g-poly(ethylene glycol)[J]. Acta Polymerica Sinica, 2019, 50(6): 543-552.
|
25 |
Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336.
|
26 |
Yabe M, Mori K, Ueda K, et al. Development of PolyParGen software to facilitate the determination of molecular dynamics simulation parameters for polymers[J]. Journal of Computer Chemistry, Japan -International Edition, 2019, 5: 2018-0034.
|
27 |
Li X, Hede T, Tu Y Q, et al. Surface-active cis-pinonic acid in atmospheric droplets: a molecular dynamics study[J]. The Journal of Physical Chemistry Letters, 2010, 1(4): 769-773.
|
28 |
Tang H A, Zhao Y, Shan S J, et al. Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory[J]. Environmental Science & Technology, 2018, 52(14): 7689-7697.
|
29 |
Wang J M, Wang W, Kollman P A, et al. Automatic atom type and bond type perception in molecular mechanical calculations[J]. Journal of Molecular Graphics and Modelling, 2006, 25(2): 247-260.
|
30 |
Song X Y, Guo H, Tao J B, et al. Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants[J]. Chemical Engineering Science, 2018, 187: 406-414.
|
31 |
Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
|
32 |
王瑞, 任瑛, 陈卫, 等. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323.
|
|
Wang R, Ren Y, Chen W, et al. Molecular dynamics simulation on the dynamic structure of icing interface[J]. CIESC Journal, 2022, 73(3): 1315-1323.
|
33 |
李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263.
|
|
Li B F, Liu G, Chen L. Study on the influence mechanism of CH4 dissolution on the intermolecular interaction between crude oil molecules based on molecular dynamics simulation[J]. CIESC Journal, 2021, 72(3): 1253-1263.
|
34 |
刘忠亮, 李晓霞, 石静, 等. 分子动力学模拟LINCS约束算法的GPU并行化[J]. 计算机与应用化学, 2012, 29(8): 907-912.
|
|
Liu Z L, Li X X, Shi J, et al. GPU-based implementation of LINCS constraint algorithm for molecular dynamics simulation[J]. Computers and Applied Chemistry, 2012, 29(8): 907-912.
|
35 |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|
36 |
Borden R C, Saunders J E, Berryhill W E, et al. Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane[J]. Audiology and Neurotology, 2010, 16(1): 1-11.
|
37 |
Li Y, Zhang X R, Cao D P. Nanoparticle hardness controls the internalization pathway for drug delivery[J]. Nanoscale, 2015, 7(6): 2758-2769.
|
38 |
Yang K, Ma Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer[J]. Nature Nanotechnology, 2010, 5(8): 579-583.
|
39 |
Ding H M, Ma Y Q. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity[J]. Nanoscale Horizons, 2018, 3(1): 6-27.
|
40 |
Ge Z, Li Q, Wang Y. Free energy calculation of nanodiamond-membrane association—the effect of shape and surface functionalization[J]. Journal of Chemical Theory and Computation, 2014, 10(7): 2751-2758.
|
41 |
Yoo J, Kim K, Kim S, et al. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery[J]. Nanoscale, 2022, 14(39): 14482-14490.
|
42 |
Shi C J, Sun Y J, Wu H Y, et al. Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading[J]. International Journal of Pharmaceutics, 2016, 512(1): 282-291.
|
43 |
Holmberg K, Tiberg F, Malmsten M, et al. Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123/124: 297-306.
|