化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1545-1558.DOI: 10.11949/0438-1157.20240958
收稿日期:2024-08-25
修回日期:2024-12-03
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
邵索拉
作者简介:许成城(1994—),男,博士,讲师,chengchengxu_seu@163.com
基金资助:
Chengcheng XU1,3(
), Suola SHAO2(
), Wenjian WEI1, Xu ZHENG2
Received:2024-08-25
Revised:2024-12-03
Online:2025-04-25
Published:2025-05-12
Contact:
Suola SHAO
摘要:
提出了一种新型铝制、无风机、内置蓄热材料的直接冷凝式辐射板换热器(aluminum radiant heating panel exchanger,AHE),可与空气源热泵系统结合进行建筑室内冬季供暖。基于蓄热型直凝式辐射板的传热机理并考虑制冷剂流动对换热性能的影响,建立了适合AHE的流动换热模型,并通过实验验证了该模型的准确性。结果表明,散热量、压降、换热器表面温度的数值模拟结果与实验值平均偏差小于5%。针对168组运行工况下AHE的热性能进行了数值模拟,结果表明冷凝温度和制冷剂流量的提升有助于提高换热强度,同时冷凝温度的升高有利于降低流动损失。在168组工况中,AHE制冷剂和表面温度的平均温差为9.7℃,AHE各相邻结构层最大温差在铜管和水层间,为6.3℃。最后提出了适用于AHE热性能预测的散热量特征公式,为辐射板供暖系统性能分析和优化提供了技术基础。
中图分类号:
许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558.
Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions[J]. CIESC Journal, 2025, 76(4): 1545-1558.
| 型材 | 金属热强度范围/(W/(kg·℃)) |
|---|---|
| 钢(柱型) | 0.6~1.3 |
| 钢(板型) | 0.9~1.4 |
| 钢(对流型) | 0.5~0.9 |
| 铜、铝及铜铝复合(柱翼型) | 1.8~3.9 |
| 铜、铝及铜铝复合(对流型) | 0.8~3.0 |
| 灰铸铁 | 0.3~0.45 |
表1 不同材料的金属热强度
Table 1 Metal thermal strength of different materials
| 型材 | 金属热强度范围/(W/(kg·℃)) |
|---|---|
| 钢(柱型) | 0.6~1.3 |
| 钢(板型) | 0.9~1.4 |
| 钢(对流型) | 0.5~0.9 |
| 铜、铝及铜铝复合(柱翼型) | 1.8~3.9 |
| 铜、铝及铜铝复合(对流型) | 0.8~3.0 |
| 灰铸铁 | 0.3~0.45 |
| 类别 | 关联式 | 适用范围 |
|---|---|---|
| Qre | 制冷剂热量 | |
| Qconv,re-co | 制冷剂与铜管对流换热 | |
单相过热区[ Rere=2300~105 Prre=0.6~105 | ||
单相过冷区[ Rere=2300~105 Prre=0.6~105, | ||
单相过冷/热[ Rere>105, Prre=0.7~160 | ||
| 两相区[ | ||
| Qcond,co-wa | 铜管与水层导热[ | |
| Qcond,wa-ap | 水层与壳体导热[ | |
| Qrad,ap-bu | 壳体与空气辐射换热[ | |
| Qconv, ap-nofi-ai | 不含肋片的壳体与空气对流换热[ | |
| Qconv, ap-fi-ai | 含平行组合肋片的壳体与 空气对流换热[ | |
| Qconv, ap(fi)-ai | 含有肋片的壳体平板部分与空气的对流换热 | |
| Qcond, ap-fi | 壳体与肋片的导热 | |
| ΔPm | 动量压降[ | |
| ΔPf | 单相流流体摩擦压降[ | |
| 两相流流体摩擦压降[ |
表2 AHE数学模型中换热及压降的经验公式
Table 2 The correlations of the heat transfer and pressure drop in the AHE model
| 类别 | 关联式 | 适用范围 |
|---|---|---|
| Qre | 制冷剂热量 | |
| Qconv,re-co | 制冷剂与铜管对流换热 | |
单相过热区[ Rere=2300~105 Prre=0.6~105 | ||
单相过冷区[ Rere=2300~105 Prre=0.6~105, | ||
单相过冷/热[ Rere>105, Prre=0.7~160 | ||
| 两相区[ | ||
| Qcond,co-wa | 铜管与水层导热[ | |
| Qcond,wa-ap | 水层与壳体导热[ | |
| Qrad,ap-bu | 壳体与空气辐射换热[ | |
| Qconv, ap-nofi-ai | 不含肋片的壳体与空气对流换热[ | |
| Qconv, ap-fi-ai | 含平行组合肋片的壳体与 空气对流换热[ | |
| Qconv, ap(fi)-ai | 含有肋片的壳体平板部分与空气的对流换热 | |
| Qcond, ap-fi | 壳体与肋片的导热 | |
| ΔPm | 动量压降[ | |
| ΔPf | 单相流流体摩擦压降[ | |
| 两相流流体摩擦压降[ |
| Parameters | Case 1 | Case 2 | Case 3 |
|---|---|---|---|
| tre_in/℃ | 52.2 | 57.5 | 66.8 |
| Pre_in/kPa | 2609.3 | 2826.3 | 3116.3 |
| Gre_total/(kg/h) | 43.9 | 49.6 | 56.7 |
| tai | 18.4 | 19.7 | 18.3 |
| twall_south | 18.2 | 18.7 | 18.0 |
| twall_east | 18.3 | 18.7 | 18.1 |
| twall_west | 18.2 | 18.7 | 18.2 |
| twall_north | 20.6 | 22.6 | 21.0 |
| tceiling | 18.3 | 18.9 | 18.2 |
| tfloor | 17.9 | 21.7 | 18.4 |
| tAUST | 18.6 | 20.0 | 18.7 |
表3 验证模型实验结果
Table 3 Experimental results of the model
| Parameters | Case 1 | Case 2 | Case 3 |
|---|---|---|---|
| tre_in/℃ | 52.2 | 57.5 | 66.8 |
| Pre_in/kPa | 2609.3 | 2826.3 | 3116.3 |
| Gre_total/(kg/h) | 43.9 | 49.6 | 56.7 |
| tai | 18.4 | 19.7 | 18.3 |
| twall_south | 18.2 | 18.7 | 18.0 |
| twall_east | 18.3 | 18.7 | 18.1 |
| twall_west | 18.2 | 18.7 | 18.2 |
| twall_north | 20.6 | 22.6 | 21.0 |
| tceiling | 18.3 | 18.9 | 18.2 |
| tfloor | 17.9 | 21.7 | 18.4 |
| tAUST | 18.6 | 20.0 | 18.7 |
| 工况组号 | Gre/(kg/h) | Pre-in/kPa | tre-in/℃ | Tai/℃ | tAUST/℃ |
|---|---|---|---|---|---|
| a1 | 36~40 | 2726.1 | 49 | 18~22 | 16 |
| a2 | 41~45 | 3062.8 | 54 | 18~22 | 16 |
| a3 | 46~50 | 3431.3 | 59 | 18~22 | 16 |
| b1 | 38 | 2662.3~2857.2 | 48~51 | 18~22 | 16 |
| b2 | 42 | 2924.5~3133.9 | 52~55 | 18~22 | 16 |
| b3 | 47 | 3206.2~3431.3 | 56~59 | 18~22 | 16 |
| c1 | 38 | 2726.1 | 47~55 | 18~22 | 16 |
| c2 | 42 | 3062.8 | 52~60 | 18~22 | 16 |
| c3 | 47 | 3431.3 | 57~65 | 18~22 | 16 |
| d1 | 38 | 2726.1 | 49 | 20 | 14~18 |
| d2 | 42 | 3062.8 | 54 | 20 | 14~18 |
| d3 | 47 | 3431.3 | 59 | 20 | 14~18 |
表4 模拟案例中运行参数的取值范围
Table 4 Ranges of operating parameters in numerical cases
| 工况组号 | Gre/(kg/h) | Pre-in/kPa | tre-in/℃ | Tai/℃ | tAUST/℃ |
|---|---|---|---|---|---|
| a1 | 36~40 | 2726.1 | 49 | 18~22 | 16 |
| a2 | 41~45 | 3062.8 | 54 | 18~22 | 16 |
| a3 | 46~50 | 3431.3 | 59 | 18~22 | 16 |
| b1 | 38 | 2662.3~2857.2 | 48~51 | 18~22 | 16 |
| b2 | 42 | 2924.5~3133.9 | 52~55 | 18~22 | 16 |
| b3 | 47 | 3206.2~3431.3 | 56~59 | 18~22 | 16 |
| c1 | 38 | 2726.1 | 47~55 | 18~22 | 16 |
| c2 | 42 | 3062.8 | 52~60 | 18~22 | 16 |
| c3 | 47 | 3431.3 | 57~65 | 18~22 | 16 |
| d1 | 38 | 2726.1 | 49 | 20 | 14~18 |
| d2 | 42 | 3062.8 | 54 | 20 | 14~18 |
| d3 | 47 | 3431.3 | 59 | 20 | 14~18 |
| 13 | Zeng Z C. Thermodynamics analysis and heat transfer research of direct radiant floor heating system with ASHP[D]. Zhengzhou: Zhengzhou University, 2010. |
| 14 | 王园园, 张超, 梁年良, 等. 空气源热泵冷剂直热式建筑采暖系统研究现状[J]. 建筑节能, 2015, 43(7): 21-24. |
| Wang Y Y, Zhang C, Liang N L, et al. Status of the refrigerant direct-heating system in building with air source heat pump[J]. Building Energy Efficiency, 2015, 43(7): 21-24. | |
| 15 | Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump[J]. Energy and Buildings, 2018, 158: 812-821. |
| 16 | Xu C C, Shao S L. Performances investigations on thermal characteristics of a novel direct-condensation convective-radiant heating panel: an experimental and numerical study[J]. Applied Thermal Engineering, 2024, 244: 122705. |
| 17 | 邵索拉, 张欢, 由世俊, 等. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
| Shao S L, Zhang H, You S J, et al. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489. | |
| 18 | Shao S L, Zhang H, You S J, et al. Experimental investigation of air-source heat pump heating system with a novel thermal storage refrigerant-heated panel[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(1): 011015. |
| 19 | 路宾, 李忠. 中国采暖散热器技术与标准现状及发展趋势分析[J]. 建筑科学, 2008, 24(8): 4-8. |
| Lu B, Li Z. Analysis on status and development trend of heating radiator technology and standards in China[J]. Building Science, 2008, 24(8): 4-8. | |
| 20 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16: 359-368. |
| 21 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
| 1 | International Energy Agency. Energy statistics data browser[R]. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser. |
| 2 | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
| 3 | Wang N B, Guo Y H, Yu H X, et al. Investigation on performance enhancement of micro-channel separated heat pipe in data center: a coupled heat-mass-flow characterization approach[J]. Applied Thermal Engineering, 2024, 248: 123327. |
| 4 | Yan H Z, Hu B, Wang R Z. Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111026. |
| 5 | 吴迪, 胡斌, 王如竹, 等. 水蒸气准饱和压缩高温热泵循环性能分析[J]. 化工学报, 2023, 74(S1): 45-52. |
| Wu D, Hu B, Wang R Z, et al. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system[J]. CIESC Journal, 2023, 74(S1): 45-52. | |
| 6 | Tanabe S, Kimura K. Importance of air movements on thermal comfort under hot and humid conditions[C]// Proceedings of the Second ASHRAE Far East Conference on Air Conditioning in Hot Climates. Kuala Lumpur: ASHRAE, 1989. |
| 7 | Wu Y F, Sun H L, Yang Z X, et al. Dynamic process simulation of indoor temperature distribution in radiant-convective heating terminals[J]. Building and Environment, 2023, 244: 110843. |
| 8 | 陈守海, 高童, 王军, 等. 挂壁式变频空调器温度场特性与热舒适研究[J]. 家电科技, 2018(S1): 147-151. |
| Chen S H, Gao T, Wang J, et al. Research on temperature field characteristics and thermal comfort of wall type frequency conversion air conditioner[J]. Journal of Appliance Science & Technology, 2018(S1): 147-151. | |
| 9 | 黄允棋, 司徒姗姗, 陈小辉. 关于壁挂式空调制热舒适性最优出风温度的实验研究[J]. 环境技术, 2019, 37(3): 64-69. |
| Huang Y Q, Situ S S, Chen X H. Experimental study on optimal air temperature for wall-mounted air conditioning heating comfort[J]. Environmental Technology, 2019, 37(3): 64-69. | |
| 22 | Davies W A, Hrnjak P. Heat transfer and flow regimes during counter-flow steam condensation in flattened-tube air-cooled condensers[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118930. |
| 23 | John H. A Heat Transfer Textbook[M]. 4th ed. USA: Phlogiston Press, 2018: 141-160, 523-577. |
| 24 | Tari I, Mehrtash M. Natural convection heat transfer from inclined plate-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 574-593. |
| 25 | Kraus A D, Aziz A, Welty J. Extended Surface Heat Transfer[M]. USA: Wiley, 2001: 58-92, 170-193. |
| 26 | Yang Z Q, Gong M Q, Chen G F, et al. Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube[J]. Applied Thermal Engineering, 2017, 120: 654-671. |
| 27 | Moody L F. Friction factors for pipe flow[J]. Journal of Fluids Engineering, Transactions of the ASME, 1944, 66(8): 671-678. |
| 28 | Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3246-3261. |
| 29 | 国家质量监督检验检疫总局, 国家标准化管理委员会. 供暖散热器散热量测定方法: [S]. 北京: 中国标准出版社, 2018. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method for measuring the heat dissipation of heating radiators: [S]. Beijing: Standards Press of China, 2018. | |
| 30 | 住房和城乡建设部. 辐射供冷及供暖装置热性能测试方法: [S]. 北京: 中国标准出版社, 2013. |
| Ministry of Housing and Urban-Rural Development of the People's Republic of China. Test methods for thermal performance of radiant cooling and heating unit: [S]. Beijing: Standards Press of China, 2013. | |
| 10 | Olesen B W. Comparative experimental study of performance of radiant floor-heating systems and a wall panel heating system under dynamic conditions[J]. ASHRAE Transactions, 1994, 100(1): 1011-1023. |
| 11 | Xiao B, He L, Zhang S H, et al. Comparison and analysis on air-to-air and air-to-water heat pump heating systems[J]. Renewable Energy, 2020, 146: 1888-1896. |
| 12 | Zhang H, Jiang L F, Zheng W D, et al. Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system[J]. Building and Environment, 2019, 164: 106341. |
| 13 | 曾章传. 空气源热泵直接地板辐射采暖能效及地板传热研究[D]. 郑州: 郑州大学, 2010. |
| [1] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [2] | 何正磊, 胡丁丁. 基于多智能体强化学习的造纸污水多目标优化[J]. 化工学报, 2025, 76(4): 1617-1634. |
| [3] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [4] | 李新颖, 苏畅, 郭超, 庞建, 王超, 李春. CRISPR技术在链霉菌细胞工厂中的应用和优化[J]. 化工学报, 2025, 76(3): 922-932. |
| [5] | 张静, 元跃, 刘艳梅, 王智文, 陈涛. 生物法制备衣康酸研究进展[J]. 化工学报, 2025, 76(3): 909-921. |
| [6] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [7] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [8] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [9] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [10] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [11] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [12] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| [13] | 王三龙, 王跃霖, 曹宇. 基于相异质结的高效无机钙钛矿太阳能电池的性能研究[J]. 化工学报, 2025, 76(3): 1346-1352. |
| [14] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| [15] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号