化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1432-1446.DOI: 10.11949/0438-1157.20241037
翟祥瑞1(
), 张伟1(
), 张倩倩1, 曲玖哲2, 杨绪飞1, 邓雅军1, 宇波3
收稿日期:2024-09-14
修回日期:2024-12-02
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
张伟
作者简介:翟祥瑞(2000—),男,硕士研究生,z13562791001@163.com
基金资助:
Xiangrui ZHAI1(
), Wei ZHANG1(
), Qianqian ZHANG1, Jiuzhe QU2, Xufei YANG1, Yajun DENG1, Bo YU3
Received:2024-09-14
Revised:2024-12-02
Online:2025-04-25
Published:2025-05-12
Contact:
Wei ZHANG
摘要:
相变储能技术在促进波动性可再生能源消纳以及利用峰谷价差实现低成本供能等领域具有广阔的应用前景。由于大多数固液相变材料热导率低且相变储能系统中对流效应弱等因素,导致相变储能系统储热/释热速率慢,发展高效固液相变换热强化技术已成为该领域的研究热点。现有研究大多通过相变材料热物性调控、换热结构优化等被动式方法来强化固液相变换热,而基于外场扰动的固液相变换热主动强化技术相关研究较少。为此,系统综述了国内外基于外部磁场、电场、声场以及多场耦合等条件下固液相变主动强化换热技术研究的最新进展,分析了外场主动强化固液相变换热的原理、关键控制参数以及应用前景等,为发展基于外场扰动的固液相变主动强化换热技术提供了良好的科学借鉴和工程指引。
中图分类号:
翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446.
Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance[J]. CIESC Journal, 2025, 76(4): 1432-1446.
图3 磁场强化相变储热器传热速率实验装置[46]
Fig.3 Experimental apparatus for the heat transfer rate of a magnetic field enhanced phase change thermal energy storage heater[46]
图4 磁场转速对平均温度(a)和相变材料液相率(b)的影响[47]
Fig.4 The effects of magnetic field rotation speed on average temperature (a) and the liquid fraction (b) of phase change materials[47]
图6 不同电Rayleigh数下在Fourier数= 2.0时的电荷密度、温度场和液体分数的瞬态分布(热Rayleigh数= 10000,AR = 3/4)[58]
Fig.6 Transient distributions of charge density, temperature field, and liquid fraction at Fourier number = 2.0 under different electric Rayleigh numbers(thermal Rayleigh number =10000, AR=3/4)[58]
图8 熔化过程中平均温度和平均流速的变化(M1、M2、M3为超声振动面位置,RM表示无超声振动)[64]
Fig.8 Changes in average temperature and average flow rate during the melting process (M1,M2,M3 represent the positions of the ultrasonic vibration surfaces, RM represents the condition without ultrasonic vibration)[64]
图9 LHTESS装置中气泡驱动流效果的概念图[67]
Fig.9 Conceptual diagram of the bubble-driven flow effect in a latent heat thermal energy storage system (LHTESS) device[67]
图11 MHPA-ITS的工作原理:(a)MHPA的传热示意图;(b)充热模型;(c)放热模型[70]
Fig.11 Working principles of MHPA-ITS: (a) heat transfer schematic of MHPA; (b) charging model; (c) discharging model[70]
图13 磁场与超声场耦合作用对材料传热与储能性能的影响:熔化时间、储能容量和储能效率[71]
Fig.13 The impact of the coupling effect of magnetic fields and ultrasonic fields on the heat transfer and energy storage performance of materials: melting time, energy storage capacity, and energy storage efficiency[71]
图14 不同外部场作用下储能电池的峰值功率密度(a)和峰值功率密度增长量(b) [72]
Fig.14 Peak power density (a) and increase in peak power density (b) of energy storage batteries under the influence of different external fields[72]
| 1 | Li Z, Lu Y J, Huang R, et al. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage[J]. Applied Energy, 2021, 283: 116277. |
| 2 | Mahon H, O'Connor D, Friedrich D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207. |
| 3 | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
| 4 | De La Peña L, Guo R, Cao X J, et al. Accelerating the energy transition to achieve carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 177: 105957. |
| 5 | Chen X, Lin B Q. Towards carbon neutrality by implementing carbon emissions trading scheme: policy evaluation in China[J]. Energy Policy, 2021, 157: 112510. |
| 6 | Ahmed A, Baig H, Sundaram S, et al. Use of nanofluids in solar PV/thermal systems[J]. International Journal of Photoenergy, 2019, 2019: 8039129. |
| 7 | Li Y N, Fu C L, Wang Z Q, et al. Novel cellulose-based films with highly efficient photothermal performance for sustainable solar evaporation and solar-thermal power generation[J]. Journal of Cleaner Production, 2024, 458: 142416. |
| 8 | 张墨耕, 赵良举, 刘朝, 等. 利用LNG冷能与工业余热的有机朗肯循环复合系统优化分析[J]. 化工学报, 2014, 65(8): 3144-3151. |
| Zhang M G, Zhao L J, Liu C,et al. Optimization and analyses of organic Rankine cycle combined system utilizing cold energy of LNG and industrial waste heat[J]. CIESC Journal, 2014, 65(8): 3144-3151. | |
| 9 | Li J X, Fan X Y, Li Y H, et al. A novel system of liquid air energy storage with LNG cold energy and industrial waste heat: thermodynamic and economic analysis[J]. Journal of Energy Storage, 2024, 86: 111359. |
| 10 | Xia R Q, Zhang W Y, Yang Y N, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal of Cleaner Production, 2021, 296: 126598. |
| 11 | 崔艳琦. 相变控温调湿建筑复合材料的研究进展[J]. 化工学报, 2018, 69(S1): 1-7. |
| Cui Y Q. Research on development of composite phase change humidity-control material in buildings[J]. CIESC Journal, 2018, 69(S1): 1-7. | |
| 12 | Wang H C, Han J B, Zhang R Y, et al. Heat-power peak shaving and wind power accommodation of combined heat and power plant with thermal energy storage and electric heat pump[J]. Energy Conversion and Management, 2023, 297: 117732. |
| 13 | Riahi A, Mosleh H J, Kavian S, et al. Performance analysis and transient simulation of a vapor compression cooling system integrated with phase change material as thermal energy storage for electric peak load shaving[J]. Journal of Energy Storage, 2021, 35: 102316. |
| 14 | Shanmugavalli P, Rajaraman R. Thermal performance enhancement methods of phase change materials for thermal energy storage systems—a review[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.08.171 . |
| 15 | Zhi M Y, Yue S, Zheng L L, et al. Recent developments in solid-solid phase change materials for thermal energy storage applications[J]. Journal of Energy Storage, 2024, 89: 111570. |
| 16 | Sheikholeslami M, Haq R U, Shafee A, et al. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1322-1342. |
| 17 | Zhang Z G, Shi G Q, Wang S P, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J]. Renewable Energy, 2013, 50: 670-675. |
| 18 | Cheng W L, Xie B, Zhang R M, et al. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system[J]. Applied Energy, 2015, 144: 10-18. |
| 19 | Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
| 20 | 张春伟, 陈静, 王成刚, 等. 相变储能技术的传热强化方法综述[J]. 制冷学报, 2023, 44(1): 1-13. |
| Zhang C W, Chen J, Wang C G, et al. Review on heat transfer enhancement methods of latent heat storage technology[J]. Journal of Refrigeration, 2023, 44(1): 1-13. | |
| 21 | Punniakodi B M S, Senthil R. Recent developments in nano-enhanced phase change materials for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111629. |
| 22 | 张欣宇, 杨晓宏, 张燕楠, 等. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
| Zhang X Y, Yang X H, Zhang Y N, et al. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. CIESC Journal, 2022, 73(10): 4399-4409. | |
| 23 | 王烨, 朱欣悦, 孙振东. 基于POD降阶模型的正弦波翅片扁管管翅式换热器流动与传热特性分析[J]. 化工学报, 2022, 73(5): 1986-1994. |
| Wang Y, Zhu X Y, Sun Z D. Flow and heat transfer characteristics analysis of flat tube-bank-fin heat exchanger with sine wave fin based on POD reduced-order model[J]. CIESC Journal, 2022, 73(5): 1986-1994. | |
| 24 | Li C, Li Q, Ge R H. Assessment on the melting performance of a phase change material based shell and tube thermal energy storage device containing leaf-shaped longitudinal fins[J]. Journal of Energy Storage, 2023, 60: 106574. |
| 25 | Rashid F L, Khalaf A F, Alizadeh A, et al. Numerical investigation of the effect of the number of fins on the phase-change material melting inside a shell-and-tube cylindrical thermal energy storage[J]. Case Studies in Thermal Engineering, 2024, 60: 104754. |
| 26 | Kurşun B, Balta M. Evaluation of the different inner and outer channel geometry combinations for optimum melting and solidification performance in double pipe energy storage with phase change material: a numerical study[J]. Journal of Energy Storage, 2023, 65: 107250. |
| 27 | Lu B H, Zhang Y X, Wang Z H, et al. Effect of shell shape on the charging and discharging performance of a vertical latent heat thermal energy storage unit: an experimental study[J]. Journal of Energy Storage, 2022, 56: 105996. |
| 28 | 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276. |
| Huang Y, Zhang X L. Heat transfer property of lauryl alcohol-capric acid-nanoparticle composite phase change materials[J]. CIESC Journal, 2016, 67(6): 2271-2276. | |
| 29 | Panda D, Dilip Saraf S, Gangawane K M. Expanded graphite nanoparticles-based eutectic phase change materials for enhancement of thermal efficiency of pin-fin heat sink arrangement[J]. Thermal Science and Engineering Progress, 2024, 48: 102417. |
| 30 | 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(S1): 119-122. |
| Wu Z G, Zhao C Y, Gu Q Z. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Journal, 2012, 63(S1): 119-122. | |
| 31 | Xu Y, Zheng Z J, Chen S, et al. Parameter analysis and fast prediction of the optimum eccentricity for a latent heat thermal energy storage unit with phase change material enhanced by porous medium[J]. Applied Thermal Engineering, 2021, 186: 116485. |
| 32 | Wang J J, Yu Y, Song L F, et al. Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries[J]. Energy Conversion and Management, 2024, 302: 118106. |
| 33 | Yang C, Xu Y, Xu X R, et al. Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125458. |
| 34 | Zhang J, Cao Z, Huang S, et al. Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems[J]. Applied Energy, 2022, 322: 119416. |
| 35 | 王宁, 张晨宇, 徐洪涛, 等. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200. |
| Wang N, Zhang C Y, Xu H T, et al. Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials[J]. CIESC Journal, 2019, 70(S2): 191-200. | |
| 36 | Liu J W, Liu Z P, Nie C D. Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube[J]. Journal of Energy Storage, 2021, 40: 102672. |
| 37 | Diaconu B M, Cruceru M, Anghelescu L. A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization[J]. Journal of Energy Storage, 2023, 61: 106830. |
| 38 | Harichandan S, Rath P, Das M K. Effect of electric field on melting characteristics of nano composite phase change material: a numerical study[J]. Applied Thermal Engineering, 2024, 254: 123835. |
| 39 | Bo G F, Basem A, Sabri L S, et al. The effects of external magnetic field amplitude on atomic and thermal behavior of phase change materials: a molecular dynamic[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107606. |
| 40 | Yan Z J, Yu Z, Yang T T, et al. Impact of ultrasound on the melting process and heat transfer of phase change material[J]. Energy Procedia, 2019, 158: 5014-5019. |
| 41 | 王正良. 磁场强化磁性液体自然对流传热的机理[J]. 化工学报, 2005, 56(2): 235-238. |
| Wang Z L. Mechanism of natural convection heat transfer of magnetic fluid enhanced by magnetic field[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(2): 235-238. | |
| 42 | Joulin A, Younsi Z, Zalewski L, et al. Experimental and numerical investigation of a phase change material: thermal-energy storage and release[J]. Applied Energy, 2011, 88(7): 2454-2462. |
| 43 | Yehya A, Adebayo P, Naji H. Using a static magnetic field to control the rate of latent energy storage and release of phase-change materials[J]. Journal of Energy Storage, 2024, 80: 110275. |
| 44 | Nguyen L M Q, Alshuraiaan B, Hajjar A, et al. Controlling energy loss from roof structures equipped by round-corner double semi-hexagonal ferro-phase change material layer using magnetic field[J]. Journal of Cleaner Production, 2023, 428: 139335. |
| 45 | Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems[J]. Journal of Cleaner Production, 2019, 215: 963-977. |
| 46 | Fan Y B, Yu M, Zhang C W, et al. Melting performance enhancement of phase change material with magnetic particles under rotating magnetic field[J]. Journal of Energy Storage, 2021, 38: 102540. |
| 47 | Lu B H, Zhang Y X, Xiao J F, et al. Experimental investigation of the effect of rotating magnetic field on the melting performance enhancement of paraffin/nano-Fe3O4 composite phase change material[J]. Journal of Energy Storage, 2024, 83: 110751. |
| 48 | Farahani S D, Farahani A D, Mamoei A J, et al. Enhancement of phase change material melting using nanoparticles and magnetic field in the thermal energy storage system with strip fins[J]. Journal of Energy Storage, 2023, 57: 106282. |
| 49 | Mehryan S A M, Tahmasebi A, Izadi M, et al. Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119184. |
| 50 | Yang Z L, Walvekar R, Wong W P, et al. Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: a comprehensive review[J]. Journal of Energy Storage, 2024, 87: 111329. |
| 51 | Atten P. Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(1): 1-17. |
| 52 | Castellanos A, Atten P. Numerical modeling of finite amplitude convection of liquids subjected to unipolar injection[C]//1985 Annual Meeting Industry Applications Society. Toronto, ON, Canada: IEEE, 1985: 1580-1585. |
| 53 | Chu B. Thermodynamics of electrically conducting fluids[J]. Physics of Fluids, 1959, 2(5): 473-484. |
| 54 | Sun Z H, Li B Y, Zhou C T, et al. Organic phase change materials melting with electrohydrodynamics (EHD): numerical simulation and experimental validation[J]. International Journal of Heat and Mass Transfer, 2023, 217: 124646. |
| 55 | Nakhla D, Sadek H, Cotton J S. Melting performance enhancement in latent heat storage module using solid extraction electrohydrodynamics (EHD)[J]. International Journal of Heat and Mass Transfer, 2015, 81: 695-704. |
| 56 | Hassen W, Oztop H F, Kolsi L, et al. Analysis of the electro-thermo-convection induced by a strong unipolar injection between two concentric or eccentric cylinders[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(7): 789-804. |
| 57 | Huang J Y, Selvakumar R D, Guan Y F, et al. Numerical investigation of injection-induced electro-convection in a dielectric liquid between two eccentric cylinders[J]. International Journal of Heat and Fluid Flow, 2020, 83: 108594. |
| 58 | He K, Wang L, Huang J X. Electrohydrodynamic enhancement of phase change material melting in circular-elliptical annuli[J]. Energies, 2021, 14(23): 8090. |
| 59 | 丛健, 高蓬辉, 张东海, 等. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128. |
| Cong J, Gao P H, Zhang D H, et al. Effect of ultrasonic on freezing state and heat transfer of droplet[J]. CIESC Journal, 2020, 71(11): 5117-5128. | |
| 60 | Murray R, Groulx D. Modeling convection during melting of a phase change material[C]//Proceedings of the COMSOL Conference. Boston, USA, 2011. |
| 61 | Cui W, Li X X, Li X Y, et al. Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam[J]. Applied Energy, 2022, 309: 118465. |
| 62 | Guo J F, Li Z, Xie Y, et al. Improved phase change performance of ultrasonic-assisted melting: a visualized experimental study[J]. Energy, 2024, 306: 132500. |
| 63 | Shahsavar A, Moradi M H, Arıcı M, et al. An in-depth study of the effect of ultrasonic field on the melting characteristics of pure and nano-enhanced PCMs using thermal and digital imagery[J]. Journal of Energy Storage, 2024, 78: 110054. |
| 64 | Guo C X, Lan M X, Zhang D W, et al. Studying the performance of phase change heat storage enhanced by ultrasonic energy[J]. Applied Thermal Engineering, 2023, 231: 120920. |
| 65 | Rahmanian S, Shahsavar A, Rahmanian-Koushkaki H, et al. Numerical feasibility study of improving the melting performance of horizontal and vertical double-pipe latent heat storage systems using ultrasonic field[J]. Journal of Energy Storage, 2023, 67: 107594. |
| 66 | 田镇岭, 陈志豪, 宇高义郎. 微通道型气泡泵驱动两相流传热特性[J]. 化工学报, 2024, 75(10): 3452-3463. |
| Tian Z L, Chen Z H, Utaka Y. Study on two-phase flow heat transfer characteristics driven by microchannel bubble pump[J]. CIESC Journal, 2024, 75(10): 3452-3463. | |
| 67 | Choi S H, Ko H S, Sohn D K. Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage[J]. Energy, 2022, 244: 123168. |
| 68 | Choi S H, Sohn D K, Ko H S. Heat transfer enhancement of latent heat thermal energy storage with nanoparticle by bubble-driven flow[J]. Applied Thermal Engineering, 2023, 231: 120922. |
| 69 | Tian S, Ma J H, Shao S Q, et al. Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow[J]. Energy, 2024, 290: 130244. |
| 70 | Liu Z C, Quan Z H, Zhao Y H, et al. Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: role of bubble-driven flow[J]. Renewable Energy, 2023, 217: 119151. |
| 71 | Li H X, Zhuang Y J, Feng J C. Multi-scale experimental analysis on the coupled effects of ultrasonic field and magnetic field on the melting and energy storage performances for hybrid nano-enhanced phase change materials[J]. Journal of Energy Storage, 2024, 84: 110801. |
| 72 | Lu L, Zhou H T, Sun P Z, et al. Synergistic effect of ultrasonic and magnetic fields on the performance of non-aqueous iron-vanadium redox flow battery with deep eutectic solvent electrolyte[J]. Journal of Energy Storage, 2023, 63: 107036. |
| 73 | Zhou F, Jia Q L, Yang Q F, et al. Research on a new industrial frequency electromagnetic coupled thermal molten salt heat storage system and its uniformity[J]. International Communications in Heat and Mass Transfer, 2024, 154: 107337. |
| 74 | Foroughi F, Lamb J J, Burheim O S, et al. Sonochemical and sonoelectrochemical production of energy materials[J]. Catalysts, 2021, 11(2): 284. |
| 75 | Merrouche D, Mohammedi K, Belaidi I. Coupling the VOF and the MHD models for the simulation of bubble rising in a metallic liquid[J]. International Journal of Material Forming, 2008, 1(1): 1107-1110. |
| [1] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [2] | 彭德其, 刘奎霖, 武洋, 俞天兰, 谭卓伟, 吴淑英, 陈莹, 唐明成, 彭建国. 振动往复螺旋强化传热性能及结晶垢微观形貌分析研究[J]. 化工学报, 2025, 76(4): 1559-1568. |
| [3] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [4] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [5] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [6] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [7] | 孙睿, 王军锋, 许浩洁, 李步发, 徐雅弦. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| [8] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [9] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [10] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [11] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [12] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [13] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [14] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [15] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号