化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1559-1568.DOI: 10.11949/0438-1157.20241005
彭德其1(
), 刘奎霖1, 武洋1, 俞天兰2, 谭卓伟1(
), 吴淑英1, 陈莹1, 唐明成3, 彭建国3
收稿日期:2024-09-05
修回日期:2024-11-12
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
谭卓伟
作者简介:彭德其(1972—),男,博士,教授,pengshuaike@163.com
基金资助:
Deqi PENG1(
), Kuilin LIU1, Yang WU1, Tianlan YU2, Zhuowei TAN1(
), Shuying WU1, Ying CHEN1, Mingcheng TANG3, Jianguo PENG3
Received:2024-09-05
Revised:2024-11-12
Online:2025-04-25
Published:2025-05-12
Contact:
Zhuowei TAN
摘要:
管内插往复螺旋具有较好的强化传热及阻垢性能,通过实验系统研究了三种螺旋节距对总传热系数、污垢热阻、污垢层厚度的影响,并结合复杂流场条件下结晶垢的微观表征,对内插往复螺旋阻垢除垢原因进行深入分析。结果表明:在实验条件范围内,随管内溶液流速增大,当往复位移为一个节距时总传热系数稳定值较未结垢时仅降低3%,管内污垢热阻稳定值最大降幅为84%,污垢平均厚度小于0.1 mm,污垢微观形貌出现六方晶体及小颗粒致密晶体块,垢层已不能完整覆盖传热面,此时往复螺旋具有连续在线阻垢性能,螺旋线对污垢层剪切力大于其所能承受的最大剪切力是阻垢性能较好的根本原因。
中图分类号:
彭德其, 刘奎霖, 武洋, 俞天兰, 谭卓伟, 吴淑英, 陈莹, 唐明成, 彭建国. 振动往复螺旋强化传热性能及结晶垢微观形貌分析研究[J]. 化工学报, 2025, 76(4): 1559-1568.
Deqi PENG, Kuilin LIU, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Enhanced heat transfer performance of vibrating reciprocating helix and micro-morphological analysis of crystallization scale[J]. CIESC Journal, 2025, 76(4): 1559-1568.
| 流速/(m/s) | p/mm | x/mm | t/s |
|---|---|---|---|
| 0.2 | 10 | <1 | — |
| 20 | 0.8 | — | |
| 30 | 5.0 | 3.0 | |
| 0.5 | 10 | 3.0 | 1.7 |
| 20 | 5.0 | 2.3 | |
| 30 | 13.0 | 4.0 | |
| 0.9 | 10 | 7.0 | 3.7 |
| 20 | 13.0 | 4.0 | |
| 30 | 28.0 | 6.2 | |
| 1.1 | 10 | 9.3 | 4.2 |
| 20 | 22.0 | 5.8 | |
| 30 | 36.0 | 8.0 | |
| 1.4 | 10 | 12.0 | 4.5 |
| 20 | 33.0 | 8.3 | |
| 30 | 51.0 | 9.3 |
表1 螺旋往复位移测定结果
Table 1 Measurement results of spiral repositioning
| 流速/(m/s) | p/mm | x/mm | t/s |
|---|---|---|---|
| 0.2 | 10 | <1 | — |
| 20 | 0.8 | — | |
| 30 | 5.0 | 3.0 | |
| 0.5 | 10 | 3.0 | 1.7 |
| 20 | 5.0 | 2.3 | |
| 30 | 13.0 | 4.0 | |
| 0.9 | 10 | 7.0 | 3.7 |
| 20 | 13.0 | 4.0 | |
| 30 | 28.0 | 6.2 | |
| 1.1 | 10 | 9.3 | 4.2 |
| 20 | 22.0 | 5.8 | |
| 30 | 36.0 | 8.0 | |
| 1.4 | 10 | 12.0 | 4.5 |
| 20 | 33.0 | 8.3 | |
| 30 | 51.0 | 9.3 |
| 误差来源 | 误差值 |
|---|---|
| 温度记录仪 | ±0.11% |
| 压力表 | ±0.28% |
| 热电偶 | ±1.10% |
| 流量计 | ±1% |
表2 相对误差
Table 2 Relative error
| 误差来源 | 误差值 |
|---|---|
| 温度记录仪 | ±0.11% |
| 压力表 | ±0.28% |
| 热电偶 | ±1.10% |
| 流量计 | ±1% |
| 1 | Fang J M, Shi C C, Zhang L, et al. Kinetic characteristics of evaporative crystallization desalination of acidic high-salt wastewater[J]. Chemical Engineering Research and Design, 2022, 187: 129-139. |
| 2 | Liu X, Zhang Z M, Zhang L, et al. Thermodynamic study on evaporation crystallization of high saline wastewater from lead-acid batteries[J]. Journal of Crystal Growth, 2021, 568: 126166. |
| 3 | Zhao H X, Lu M Z, Hu X Q, et al. Evaluation of the performance of ultrasound-assisted membrane distillation crystallization process for water and sodium chloride recovery in hypersaline solution[J]. Desalination, 2022, 531: 115727. |
| 4 | Hasan M, Rotich N, John M, et al. Salt recovery from wastewater by air-cooled eutectic freeze crystallization[J]. Chemical Engineering Journal, 2017, 326: 192-200. |
| 5 | Ni N, Yuan H, Zhang Z, et al. Theoretical research on ship desulfurization wastewater freezing desalination system driven by waste heat[J]. Desalination, 2023, 549: 116363. |
| 6 | 于欢, 彭德其, 田清, 等. 管内旋流场综合性能研究进展[J]. 化工进展, 2013, 32(7): 1474-1479. |
| Yu H, Peng D Q, Tian Q, et al. Research development of comprehensive performance of rotational flow field in tube[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1474-1479. | |
| 7 | Aldawi F. Proposing the employment of spring-wire turbulator for flat spiral tubes utilized in solar ponds: experimental study[J]. Case Studies in Thermal Engineering, 2022, 36: 102180. |
| 8 | Yu C L, Ren Z W, Zeng M, et al. Parameters optimization of a parallel-flow heat exchanger with a new type of anti-vibration baffle and coiled wire using Taguchi method[J]. Journal of Zhejiang University: Science A, 2018, 19(9): 676-690. |
| 9 | Keklikcioglu O, Ozceyhan V. Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectioned coiled-wire inserts[J]. Applied Thermal Engineering, 2018, 131: 686-695. |
| 10 | Dang W, Wang L B. Convective heat transfer enhancement mechanisms in circular tube inserted with a type of twined coil[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120960. |
| 11 | Chang S W, Yu K C. Heat transfer enhancement by spirally coiled spring inserts with and without segmental solid cords[J]. Experimental Thermal and Fluid Science, 2018, 97: 119-132. |
| 12 | Xu Z, Han Z, Wang J,et al. Numerical simulation of CaSO4 crystallization fouling in a rectangular channel with vortex generators[J].International Communications in Heat and Mass Transfer, 2019, 101:42-50. |
| 13 | Gnanavel C, Saravanan R, Chandrasekaran M. Heat transfer augmentation by nano-fluids and spiral spring insert in double tube heat exchanger—a numerical exploration[J]. Materials Today: Proceedings, 2020, 21: 857-861. |
| 14 | 胡斐, 陆晓峰, 朱晓磊. 高黏介质中内插扭带对换热管换热性能影响[J]. 化工进展, 2015, 34(9): 3232-3237. |
| Hu F, Lu X F, Zhu X L. Influences of an inserted twisted tape on the heat transfer performances of a tube with high viscous medium[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3232-3237. | |
| 15 | 彭德其, 张寓川, 武洋, 等. 换热管内插螺旋阻垢性能及污垢微观特征[J]. 化工学报, 2023, 74(10): 4129-4139. |
| Peng D Q, Zhang Y C, Wu Y, et al. Scale-resisting properties and microscopic characteristics of the spiral insert of heat exchange tube[J]. CIESC Journal, 2023, 74(10): 4129-4139. | |
| 16 | Pahlavanzadeh H, Jafari Nasr M R, Mozaffari S H. Experimental study of thermo-hydraulic and fouling performance of enhanced heat exchangers[J]. International Communications in Heat and Mass Transfer, 2007, 34(7): 907-916. |
| 17 | Mashoofi N, Pesteei S M, Moosavi A, et al. Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator[J]. Applied Thermal Engineering, 2017, 111: 1008-1015. |
| 18 | Dong L L, Crittenden B D, Yang M. Fouling characteristics of water-CaSO4 solution under surface crystallization and bulk precipitation[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121812. |
| 19 | Song K S, Lim J, Yun S, et al. Composite fouling characteristics of CaCO3 and CaSO4 in plate heat exchangers at various operating and geometric conditions[J]. International Journal of Heat and Mass Transfer, 2019, 136: 555-562. |
| 20 | Gao R, Shen C, Wang X L, et al. Experimental study on the fouling and heat transfer characteristics of enhanced tubes used in a cooling tower water system with the actual water quality[J]. International Journal of Thermal Sciences, 2022, 181: 107777. |
| 21 | Liang Y D, Xu Y, Guan J, et al. Experimental study on fouling inhibition characteristics of a variable frequency electromagnetic field on the CaCO3 fouling of a heat transfer surface[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122756. |
| 22 | Wang L T, Ge H H, Han Y T, et al. Effects of Al2O3 nanoparticles on the formation of inorganic scale on heat exchange surface with and without scale inhibitor[J]. Applied Thermal Engineering, 2019, 151: 1-10. |
| 23 | Zhu H F, Zheng F, Lu S J, et al. Effect of electrochemical pretreatment on the control of scaling and fouling caused by circulating cooling water on heat exchanger and side-stream reverse osmosis membrane[J]. Journal of Water Process Engineering, 2021, 43: 102261. |
| 24 | Zhao X, Li S Q, Li Y K, et al. Investigation of scale inhibition effect and mechanism of S-HGMF in the clean recirculating cooling water system[J], Science of the Total Environment, 2022, 845: 157156. |
| 25 | Andritsos N, Karabelas A J, Koutsoukos P G. Morphology and structure of CaCO3 scale layers formed under isothermal flow conditions[J]. Langmuir, 1997, 13(10): 2873-2879. |
| 26 | 彭德其, 张凯博, 俞天兰, 等. 基于PIV法的管内插螺旋液固两相流流场特征[J]. 高校化学工程学报, 2021, 35(2): 243-250. |
| Peng D Q, Zhang K B, Yu T L, et al. Flow field characteristics of liquid-solid two-phase flow in tubes with spiral insert using PIV[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(2): 243-250. | |
| 27 | 彭德其, 谭卓伟, 张浪, 等. 换热器换热管内插螺旋流态化传热及除防垢的影响因素[J]. 过程工程学报, 2015, 15(6): 935-939. |
| Peng D Q, Tan Z W, Zhang L, et al. Influential factors in heat transfer and anti-fouling of heat exchanger tube-inserted fluidization[J]. The Chinese Journal of Process Engineering, 2015, 15(6): 935-939. | |
| 28 | Farouk N, Abed A M, Singh P K, et al. Thermal performance analysis of artificially roughened solar air heater under turbulent pulsating flow with various wave shapes[J]. Case Studies in Thermal Engineering, 2023, 41: 102664. |
| 29 | Yan Z H, Zhou D, Zhang Q H, et al. A critical review on fouling influence factors and antifouling coatings for heat exchangers of high-salt industrial wastewater[J]. Desalination, 2023, 553: 116504. |
| 30 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| 31 | Srivastva U, Malhotra R K, Ravi Kumar K, et al. Comparative assessment of classical heat resistance and Wilson plot test techniques used for determining convective heat transfer coefficient of thermo fluids[J]. Thermal Science and Engineering Progress, 2019, 11: 111-124. |
| 32 | 孙志传, 李蔚, 闫晓龙, 等. 不锈钢三维强化管内的换热和压降特性[J]. 化工学报, 2018, 69(S2): 45-54. |
| Sun Z C, Li W, Yan X L, et al. Heat transfer and pressure drop characteristics in stainless steel three-dimensional strengthened tubes[J]. CIESC Journal, 2018, 69(S2): 45-54. | |
| 33 | 聂光华. 十水合硫酸钠及十水合碳酸钠热导率的测量研究[J]. 无机盐工业, 2004, 36(3): 53-55. |
| Nie G H. Measurement of the thermal conductivities of Na2SO4·10H2O and Na2CO3·10H2O[J]. Inorganic Chemicals Industry, 2004, 36(3): 53-55. | |
| 34 | 王建江, 李涛, 景雪晖, 等. 直接空冷凝汽器翅片管污垢层清洗的数值研究[J]. 化工进展, 2016, 35(S2): 99-102. |
| Wang J J, Li T, Jing X H, et al. Numerical investigation on fouling cleaning of direct air cooled condenser finned tube[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 99-102. |
| [1] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [2] | 孙睿, 王军锋, 许浩洁, 李步发, 徐雅弦. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| [3] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [4] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [5] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [6] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [7] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [8] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [9] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [10] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [11] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| [12] | 禹言芳, 张埔瑜, 孟辉波, 孙雯, 李雯, 乔文龙, 张梦琼. 仿生海螺型静态混合器传热与湍流脉动特性实验研究[J]. 化工学报, 2025, 76(3): 1040-1049. |
| [13] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [14] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
| [15] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号