化工学报 ›› 2025, Vol. 76 ›› Issue (6): 3115-3124.DOI: 10.11949/0438-1157.20241216
• 过程安全 • 上一篇
麦棹铭1(
), 武颖韬1, 王维1, 穆海宝2, 黄佐华1, 汤成龙1(
)
收稿日期:2024-10-31
修回日期:2024-12-02
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
汤成龙
作者简介:麦棹铭(1996—),男,博士研究生,cccmzm@126.com
基金资助:
Zhaoming MAI1(
), Yingtao WU1, Wei WANG1, Haibao MU2, Zuohua HUANG1, Chenglong TANG1(
)
Received:2024-10-31
Revised:2024-12-02
Online:2025-06-25
Published:2025-07-09
Contact:
Chenglong TANG
摘要:
本研究通过实验和数值模拟方法,系统地研究了正十二烷-甲烷双燃料混合物在中低温条件下的着火特性。通过快速压缩机实验中获取的双燃料着火延迟时间结果,发现正十二烷的添加对双燃料混合物的着火有非线性的促进作用。此外,稀释气体的种类也会显著影响双燃料混合物的着火特性。结合最新开发的反应动力学机理(Mai2024),对实验数据进行了数值模拟和机理分析,以揭示正十二烷的添加以及稀释气体的种类对双燃料着火的作用机制。实验数据与机理预测结果具有较好的一致性,验证了Mai2024机理在预测正十二烷-甲烷双燃料混合物着火特性方面的准确性。研究结果表明,添加正十二烷可以促进双燃料混合物着火,这种促进作用是非线性的,且与·OH自由基产率的非线性增长是一致的。正十二烷添加对着火的非线性促进作用一方面是由于其低温氧化过程可以促进自由基池的生成和累积;另一方面是由于其低温氧化过程放热使得系统温度升高。此外,稀释气体的种类对燃料第一阶段着火过程影响较小。但对于总着火延迟时间,稀释气体的热物性差异在低温区域起到了决定性作用;而化学效应主要在更高温区域影响双燃料的着火特性。
中图分类号:
麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124.
Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel[J]. CIESC Journal, 2025, 76(6): 3115-3124.
图3 在5 bar和10 bar条件下不同n-C12H26含量的n-C12H26/CH4双燃料混合物的着火延迟时间和机理预测值
Fig.3 The measured and model-predicted IDTs of n-C12H26/CH4 binary mixtures with different n-C12H26 contents at 5 bar and 10 bar
图4 在不同稀释气体条件下100%和20% n-C12H26含量的n-C12H26/CH4双燃料混合物的着火延迟时间和机理预测值
Fig.4 The measured and model-predicted IDTs of n-C12H26/CH4 binary mixtures with 100% and 20% n-C12H26 content under different dilution gas conditions
图5 2.7%和20% n-C12H26含量的n-C12H26/CH4双燃料混合物的关键物种和温度随归一化时间的变化
Fig.5 Evolution of key species and temperature of the n-C12H26/CH4 binary mixture with 2.7% and 20% n-C12H26 content as the normalized times
图6 n-C12H26/CH4双燃料混合物的着火延迟时间和最大·OH自由基产率随不同n-C12H26含量的变化
Fig.6 The evolution of IDTs and maximum ·OH ROP of n-C12H26/CH4 binary mixture with various n-C12H26 content
图7 自着火前2.7%(a)和20%(b) n-C12H26含量的n-C12H26/CH4双燃料混合物的·OH自由基的归一化ROP
Fig.7 Normalized ROP for ·OH radicals for n-C12H26/CH4 binary mixture with 2.7% (a) and 20% (b) n-C12H26 content before total ignition
图8 自着火前2.7%(a)和20%(b) n-C12H26含量的n-C12H26/CH4双燃料混合物的主要吸热和放热反应
Fig.8 Major endothermic and exothermic reactions for n-C12H26/CH4 binary mixture with 2.7% (a) and 20% (b) n-C12H26 content before total ignition
图9 20% n-C12H26含量的n-C12H26/CH4双燃料混合物在5 bar与不同稀释气体条件下的着火延迟时间
Fig.9 IDTs of n-C12H26/CH4 binary mixture with 20% n-C12H26 content under 5 bar and different dilution gas conditions
图10 在5 bar和680 K条件下,具有不同稀释气体的20% n-C12H26含量的n-C12H26/CH4双燃料混合物的关键物种、温度、比热容和累积放热的变化
Fig.10 Evolution of key species, temperature, specific heat and accumulated heat release of n-C12H26/CH4 binary mixture with 20% n-C12H26 content and different dilution gas under 5 bar and 680 K conditions
图11 在5 bar、680 K和800 K条件下,使用不同惰性气体稀释的20% n-C12H26含量n-C12H26/CH4双燃料混合物的反应敏感性分析
Fig.11 Sensitivity analysis of n-C12H26/CH4 binary mixture with 20% n-C12H26 content diluted with different inert gases at 5 bar, 680 K, and 800 K
| [1] | Chen Y J, Zhu Z, Chen Y J, et al. Study of injection pressure couple with EGR on combustion performance and emissions of natural gas-diesel dual-fuel engine[J]. Fuel, 2020, 261: 116409. |
| [2] | Papagiannakis R G, Rakopoulos C D, Hountalas D T, et al. Emission characteristics of high speed, dual fuel, compression ignition engine operating in a wide range of natural gas/diesel fuel proportions[J]. Fuel, 2010, 89(7): 1397-1406. |
| [3] | Wei L J, Geng P. A review on natural gas/diesel dual fuel combustion, emissions and performance[J]. Fuel Processing Technology, 2016, 142: 264-278. |
| [4] | 王浒, 廖秀科, 梁和平, 等. 柴油/天然气双燃料发动机数值优化[J]. 燃烧科学与技术, 2022, 28(1): 11-19. |
| Wang H, Liao X K, Liang H P, et al. Numerical optimization of diesel/natural gas dual-fuel engine[J]. Journal of Combustion Science and Technology, 2022, 28(1): 11-19. | |
| [5] | Lu X C, Han D, Huang Z. Fuel design and management for the control of advanced compression-ignition combustion modes[J]. Progress in Energy and Combustion Science, 2011, 37(6): 741-783. |
| [6] | 李徐程, 张尊华, 毛立通, 等. 天然气/柴油双燃料发动机燃料喷射及着火特性[J]. 内燃机学报, 2021, 39(1): 34-43. |
| Li X C, Zhang Z H, Mao L T, et al. Spray and ignition characteristics of a high-pressure direct-injection natural gas engine[J]. Transactions of CSICE, 2021, 39(1): 34-43. | |
| [7] | Liang J J, Zhang Z H, Li G S, et al. Experimental and kinetic studies of ignition processes of the methane-n-heptane mixtures[J]. Fuel, 2019, 235: 522-529. |
| [8] | Schuh S, Ramalingam A K, Minwegen H, et al. Experimental investigation and benchmark study of oxidation of methane-propane-n-heptane mixtures at pressures up to 100 bar[J]. Energies, 2019, 12(18): 3410. |
| [9] | Zhu J Z, Li J, Wang S X, et al. Ignition delay time measurements and kinetic modeling of methane/diesel mixtures at elevated pressures[J]. Combustion and Flame, 2021, 229: 111390. |
| [10] | Mai Z M, Wu Y T, Tang C L, et al. Understanding the nonlinear reactivity promoting effect of n-heptane addition on the binary mixture from low to intermediate temperature: a case of methane/n-heptane mixtures[J]. Journal of Engineering for Gas Turbines and Power, 2024, 146(7): 071003. |
| [11] | Faramawy S, Zaki T, Sakr A A E. Natural gas origin, composition, and processing: a review[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 34-54. |
| [12] | Yu L, Wang S X, Wang W Y, et al. Exploration of chemical composition effects on the autoignition of two commercial diesels: rapid compression machine experiments and model simulation[J]. Combustion and Flame, 2019, 204: 204-219. |
| [13] | Yu L, Mao Y B, Qiu Y, et al. Experimental and modeling study of the autoignition characteristics of commercial diesel under engine-relevant conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4805-4812. |
| [14] | Karimkashi S, Gadalla M, Kannan J, et al. Large-eddy simulation of diesel pilot spray ignition in lean methane-air and methanol-air mixtures at different ambient temperatures[J]. International Journal of Engine Research, 2023, 24(3): 965-981. |
| [15] | Ghaderi Masouleh M, Wehrfritz A, Kaario O, et al. Comparative study on chemical kinetic schemes for dual-fuel combustion of n-dodecane/methane blends[J]. Fuel, 2017, 191: 62-76. |
| [16] | Zhou W J, Zhou S, Xi H Y, et al. Chemical kinetic study on dual-fuel combustion: the ignition properties of n-dodecane/methane mixture[J]. International Journal of Chemical Engineering, 2021, 2021: 7100812. |
| [17] | Mai Z M, Wu Y T, Tang C L, et al. Ignition delay time measurements and kinetic modeling for n-dodecane and methane blends at low-to-intermediate temperature conditions[J]. Combustion and Flame, 2024, 266: 113527. |
| [18] | 杨猛, 丁晓倩, 余涛, 等. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| Yang M, Ding X Q, Yu T, et al. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide[J]. CIESC Journal, 2025, 76(3): 1221-1229. | |
| [19] | 李宁, 赵玉伟, 魏衍举, 等. 聚甲氧基二甲醚-2燃烧动力学模型及试验研究[J]. 内燃机工程, 2024, 45(1): 98-108. |
| Li N, Zhao Y W, Wei Y J, et al. Combustion kinetic modeling and experimental study of polyoxymethylene dimethyl ethers-2(PODE2)[J]. Chinese Internal Combustion Engine Engineering, 2024, 45(1): 98-108. | |
| [20] | Hu H R, Keck J. Autoignition of adiabatically compressed combustible gas mixtures[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987: 16. |
| [21] | Weber B W, Sung C J, Renfro M W. On the uncertainty of temperature estimation in a rapid compression machine[J]. Combustion and Flame, 2015, 162(6): 2518-2528. |
| [22] | ANSYS, Inc. ANSYS CHEMKIN® academic research, release 18.2[Z]. 2017. |
| [23] | Mao Y B, Raza M, Wu Z Y, et al. An experimental study of n-dodecane and the development of an improved kinetic model[J]. Combustion and Flame, 2020, 212: 388-402. |
| [24] | Cai L M, Pitsch H, Mohamed S Y, et al. Optimized reaction mechanism rate rules for ignition of normal alkanes[J]. Combustion and Flame, 2016, 173: 468-482. |
| [25] | Miyoshi A. Molecular size dependent falloff rate constants for the recombination reactions of alkyl radicals with O2 and implications for simplified kinetics of alkylperoxy radicals[J]. International Journal of Chemical Kinetics, 2012, 44(1): 59-74. |
| [26] | Mohamed S Y, Davis A C, Al Rashidi M J, et al. High-pressure limit rate rules for α-H isomerization of hydroperoxyalkylperoxy radicals[J]. The Journal of Physical Chemistry A, 2018, 122(14): 3626-3639. |
| [27] | Zhang K W, Banyon C, Bugler J, et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion and Flame, 2016, 172: 116-135. |
| [28] | Bugler J, Power J, Curran H J. A theoretical study of cyclic ether formation reactions[J]. Proceedings of the Combustion Institute, 2017, 36(1): 161-167. |
| [29] | Zhang K W, Banyon C, Burke U, et al. An experimental and kinetic modeling study of the oxidation of hexane isomers: developing consistent reaction rate rules for alkanes[J]. Combustion and Flame, 2019, 206: 123-137. |
| [30] | Di H S, He X, Zhang P, et al. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane[J]. Combustion and Flame, 2014, 161(10): 2531-2538. |
| [1] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [2] | 赵清萍, 张敏, 赵辉, 王刚, 邱永福. 乙烯氢甲酯化合成丙酸甲酯的氢键作用机制及反应动力学研究[J]. 化工学报, 2025, 76(6): 2701-2713. |
| [3] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [4] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [5] | 梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462. |
| [6] | 张玮杰, 何甲文, 张一鸣, 李德立, 胡光亚, 蔡骁, 王金华, 黄佐华. 燃料分层对多级旋流甲烷燃烧流场和火焰结构影响研究[J]. 化工学报, 2025, 76(4): 1754-1764. |
| [7] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [8] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [9] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [10] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [11] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [12] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
| [13] | 郭珊, 田雨, 徐永滨, 王朋, 刘治明. 废旧电池再资源化制备高性能中熵合金催化剂及其性能研究[J]. 化工学报, 2025, 76(1): 231-240. |
| [14] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
| [15] | 陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号