化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 183-194.DOI: 10.11949/0438-1157.20240249
陈森洋1,2(), 靳蒲航1(
), 谭志明2, 谢公南1,2
收稿日期:
2024-03-04
修回日期:
2024-05-22
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
靳蒲航
作者简介:
陈森洋(2000—),女,硕士研究生,chensenyang@mail.nwpu.edu.cn
基金资助:
Senyang CHEN1,2(), Puhang JIN1(
), Zhiming TAN2, Gongnan XIE1,2
Received:
2024-03-04
Revised:
2024-05-22
Online:
2024-12-25
Published:
2024-12-17
Contact:
Puhang JIN
摘要:
水管理是提升质子交换膜燃料电池(PEMFC)工作性能的重要手段,为了解决燃料电池阴极流道“水淹”的问题,需要明晰液滴在不同流道结构中的运动规律以寻找加速液滴排离的方法。采用两相数值模拟方法对不同尺寸(直径0.6~0.8 mm)、不同初始位置及不同数量(1~2个)的液滴在两种流道结构中的运动行为进行了仿真分析,重点关注影响液滴排出时间和液滴运动形态的主要影响因素。结果表明,液滴的尺寸及与弯道部分的接触方式极大地影响了液滴的运动姿态及排出时间,液滴直径越大排出时间越短,直径的增大有效加速了内侧液滴的排出;同时,与圆角弯道结构的流道相比,半圆形弯管结构的流道更有利于液滴的排出。
中图分类号:
陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194.
Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC[J]. CIESC Journal, 2024, 75(S1): 183-194.
网格数量/个 | 排出时间/s |
---|---|
10×104 | 0.0178 |
22×104 | 0.0210 |
41×104 | 0.0205 |
表1 不同网格工况液滴排出时间统计
Table 1 Statistics of droplet discharge time in models with different units
网格数量/个 | 排出时间/s |
---|---|
10×104 | 0.0178 |
22×104 | 0.0210 |
41×104 | 0.0205 |
库仑数 | 排出时间/s |
---|---|
1 | 0.0208 |
2 | 0.0210 |
3 | 0.0211 |
表2 不同库仑数工况液滴排出时间统计
Table 2 Droplet discharge time in models with different Courant numbers
库仑数 | 排出时间/s |
---|---|
1 | 0.0208 |
2 | 0.0210 |
3 | 0.0211 |
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
1 | A | 6 | 0.6 | 内侧 | 0.0796 |
2 | A | 6 | 0.6 | 外侧 | 0.0613 |
3 | A | 6 | 0.7 | 内侧 | 0.0311 |
4 | A | 6 | 0.7 | 外侧 | 0.0290 |
5 | A | 6 | 0.8 | 内侧 | 0.0215 |
6 | A | 6 | 0.8 | 外侧 | 0.0237 |
7 | B | 6 | 0.6 | 内侧 | 0.0815 |
8 | B | 6 | 0.6 | 外侧 | 0.0683 |
9 | B | 6 | 0.7 | 内侧 | 0.0233 |
10 | B | 6 | 0.7 | 外侧 | 0.0295 |
11 | B | 6 | 0.8 | 内侧 | 0.0222 |
12 | B | 6 | 0.8 | 外侧 | 0.0210 |
表3 单液滴仿真工况及排出时间统计
Table 3 Single droplet simulation conditions and discharge time
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
1 | A | 6 | 0.6 | 内侧 | 0.0796 |
2 | A | 6 | 0.6 | 外侧 | 0.0613 |
3 | A | 6 | 0.7 | 内侧 | 0.0311 |
4 | A | 6 | 0.7 | 外侧 | 0.0290 |
5 | A | 6 | 0.8 | 内侧 | 0.0215 |
6 | A | 6 | 0.8 | 外侧 | 0.0237 |
7 | B | 6 | 0.6 | 内侧 | 0.0815 |
8 | B | 6 | 0.6 | 外侧 | 0.0683 |
9 | B | 6 | 0.7 | 内侧 | 0.0233 |
10 | B | 6 | 0.7 | 外侧 | 0.0295 |
11 | B | 6 | 0.8 | 内侧 | 0.0222 |
12 | B | 6 | 0.8 | 外侧 | 0.0210 |
X轴位置/mm | 文献[ | 本文模型运动时间/ms |
---|---|---|
0 | 1.000 | 1.000 |
4.0 | 2.290 | 2.289 |
6.0 | 3.859 | 3.664 |
10.0 | 7.985 | 7.546 |
12.0 | 10.403 | 9.940 |
表4 本文模型与文献[25]同一工况液滴运出时间及位置变化对比
Table 4 Comparison of droplet movement time and position between this work and the Ref.[25]
X轴位置/mm | 文献[ | 本文模型运动时间/ms |
---|---|---|
0 | 1.000 | 1.000 |
4.0 | 2.290 | 2.289 |
6.0 | 3.859 | 3.664 |
10.0 | 7.985 | 7.546 |
12.0 | 10.403 | 9.940 |
图3 组别1、2(模型A中0.6 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.3 Droplet motion attitude at different moments for groups 1 and 2 (0.6 mm droplet in model A at inner/outer side)
图4 组别7、8(模型B中0.6 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.4 Droplet motion attitude at different moments for groups 7 and 8 (0.6 mm droplet in model A at inner/outer side)
图5 组别3、4(模型A中0.7 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.5 Droplet motion attitude at different moments for groups 3 and 4 (0.7 mm droplet in model A at inner/outer side)
图6 组别5、6(模型A中0.8 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.6 Droplet motion attitude at different moments for groups 5 and 6 (0.8 mm droplet in model A at inner/outer side)
图7 组别9、10(模型B中0.7 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.7 Droplet motion attitude at different moments for groups 9 and 10 (0.7 mm droplet in model B at inner/outer side)
图8 组别11、12(模型B中0.8 mm的液滴在内侧/外侧时)不同时刻液滴运动姿态
Fig.8 Droplet motion attitude at different moments for groups 11 and 12 (0.8 mm droplet in model B at inner/outer side)
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
13 | A | 6 | 0.4 | 均位于内侧 | 0.1287 |
14 | A | 6 | 0.4 | 均位于外侧 | 停驻 |
15 | A | 6 | 0.4 | 内侧-外侧 | 部分停驻 |
16 | B | 6 | 0.4 | 均位于内侧 | 0.0722 |
17 | B | 6 | 0.4 | 均位于外侧 | 0.0506 |
18 | B | 6 | 0.4 | 内侧-外侧 | 0.1057 |
表5 双液滴仿真工况及排出时间统计
Table 5 Double droplets simulation conditions and discharge time
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
13 | A | 6 | 0.4 | 均位于内侧 | 0.1287 |
14 | A | 6 | 0.4 | 均位于外侧 | 停驻 |
15 | A | 6 | 0.4 | 内侧-外侧 | 部分停驻 |
16 | B | 6 | 0.4 | 均位于内侧 | 0.0722 |
17 | B | 6 | 0.4 | 均位于外侧 | 0.0506 |
18 | B | 6 | 0.4 | 内侧-外侧 | 0.1057 |
1 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
2 | Jewell J, McCollum D, Emmerling J, et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions[J]. Nature, 2018, 554(7691): 229-233. |
3 | Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12(2): 463-491. |
4 | Konno N, Mizuno S, Nakaji H, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129. |
5 | Agyekum E B, Ampah J D, Wilberforce T, et al. Research progress, trends, and current state of development on PEMFC: new insights from a bibliometric analysis and characteristics of two decades of research output[J]. Membranes, 2022, 12(11): 1103. |
6 | Athanasaki G, Jayakumar A, Kannan A M. Gas diffusion layers for PEM fuel cells: materials, properties and manufacturing: a review[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2294-2313. |
7 | Liu Q S, Lan F C, Chen J Q, et al. A review of proton exchange membrane fuel cell water management: membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: 230723. |
8 | Claude F, Ramadan H S, Becherif M, et al. Heat management methodology for enhanced global efficiency in hybrid electric vehicles[J]. Case Studies in Thermal Engineering, 2017, 10: 325-334. |
9 | Ozden E, Tari I. Proton exchange membrane fuel cell degradation: a parametric analysis using computational fluid dynamics[J]. Journal of Power Sources, 2016, 304: 64-73. |
10 | Ozden A, Shahgaldi S, Li X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells: with a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
11 | Chakraborty S, Elangovan D, Palaniswamy K, et al. A review on the numerical studies on the performance of proton exchange membrane fuel cell (PEMFC) flow channel designs for automotive applications[J]. Energies, 2022, 15(24): 9520. |
12 | Depcik C, Cassady T, Collicott B, et al. Comparison of lithium ion batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle[J]. Energy Conversion and Management, 2020, 207: 112514. |
13 | Wang Y, Seo B, Wang B W, et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology[J]. Energy and AI, 2020, 1: 100014. |
14 | Budak Y, Devrim Y. Investigation of micro-combined heat and power application of PEM fuel cell systems[J]. Energy Conversion and Management, 2018, 160: 486-494. |
15 | Schröder A, Wippermann K, Arlt T, et al. Neutron radiography and current distribution measurements for studying cathode flow field properties of direct methanol fuel cells[J]. International Journal of Energy Research, 2014, 38(7): 926-943. |
16 | Ous T, Arcoumanis C. Visualisation of water droplets during the operation of PEM fuel cells[J]. Journal of Power Sources, 2007, 173(1): 137-148. |
17 | Bozorgnezhad A, Shams M, Kanani H, et al. Two-phase flow and droplet behavior in microchannels of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19164-19181. |
18 | Bozorgnezhad A, Shams M, Kanani H, et al. Experimental investigation on dispersion of water droplets in the single-serpentine channel of a PEM fuel cell[J]. Journal of Dispersion Science and Technology, 2015, 36(8): 1190-1197. |
19 | Baek S M, Yu S H, Nam J H, et al. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs[J]. Applied Thermal Engineering, 2011, 31(8/9): 1427-1434. |
20 | Rahimi-Esbo M, Ranjbar A A, Ramiar A, et al. Improving PEM fuel cell performance and effective water removal by using a novel gas flow field[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3023-3037. |
21 | Li W K, Zhang Q L, Wang C, et al. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J]. Applied Energy, 2017, 195: 278-288. |
22 | Fan L H, Niu Z Q, Zhang G B, et al. Optimization design of the cathode flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 171: 1813-1821. |
23 | Zhu X, Sui P C, Djilali N. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel[J]. Journal of Power Sources, 2008, 181(1): 101-115. |
24 | Liu H C, Tan J, Cheng L S, et al. Enhanced water removal performance of a slope turn in the serpentine flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 227-235. |
25 | Lei H, Huang H Z, Li C, et al. Numerical simulation of water droplet transport characteristics in cathode channel of proton exchange membrane fuel cell with tapered slope structures[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29331-29344. |
26 | Liao S X, Qiu D K, Yi P Y, et al. Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells[J]. Energy, 2022, 261: 125235. |
27 | Zhang X Q, Yang J P, Ma X, et al. Numerical investigation of water dynamics in a novel wettability gradient anode flow channel for proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2020, 44(13): 10282-10294. |
28 | 李梦佳. 碳纸的疏水改性及其性能研究[D]. 天津: 天津工业大学, 2021. |
Li M J. Hydrophobic modification of carbon paper and its properties[D]. Tianjin: Tianjin Polytechnic University, 2021. | |
29 | 王浩, 钟伟, 徐东晓, 等. 管道用超疏水PTFE/PPS复合涂层的耐久性分析[J]. 塑料科技, 2021, 49(7): 56-60. |
Wang H, Zhong W, Xu D X, et al. Durability analysis of superhydrophobic PTFE/PPS composite coating for pipeline[J]. Plastics Science and Technology, 2021, 49(7): 56-60. | |
30 | 王睿哲. PTFE基复合涂层织构化表面的疏水性及耐磨性能[D]. 北京: 中国地质大学(北京), 2020. |
Wang R Z. Hydrophobicity and wear resistance of textured surface of PTFE based composite coating[D]. Beijing: China University of Geosciences, 2020. |
[1] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[2] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
[3] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
[4] | 陈宏, 江坤, 唐廷江, 黄易元, 池滨, 廖世军. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 637-646. |
[5] | 于瑞佼, 郭航, 叶芳, 陈浩. 扩散层孔隙率对燃料电池性能的影响[J]. 化工学报, 2024, 75(10): 3752-3762. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[8] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[9] | 朱晓兵, 张建辉, 李小松, 刘景林, 刘剑豪, 金灿. 空气源电化学连续分离制氧(Ⅰ):单池性能优化[J]. 化工学报, 2016, 67(5): 2022-2032. |
[10] | 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. |
[11] | 彭跃进, 彭赟, 李伦, 刘志祥, 陈维荣. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
[12] | 沈俊, 周兵, 邱子朝, 涂正凯, 刘志春, 刘伟. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425. |
[13] | 蔡光旭1,2,郭建伟2,王佳1. 交流阻抗技术在质子交换膜燃料电池上的研究进展[J]. 化工进展, 2014, 33(01): 56-63. |
[14] | 卜永东, 沈寅麒, 杜小泽, 杨立军, 杨勇平. 仿蜂巢微通道分叉结构的甲醇重整制氢[J]. 化工学报, 2013, 64(6): 2177-2185. |
[15] | 汪飞杰, 杨代军, 张浩, 马建新. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||