化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3671-3685.DOI: 10.11949/0438-1157.20241430
李同辉(
), 回天力, 郑涛, 张睿, 刘海燕, 刘植昌, 徐春明, 孟祥海(
)
收稿日期:2024-12-09
修回日期:2025-01-07
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
孟祥海
作者简介:李同辉(1995—),男,博士研究生,lthljq@163.com
基金资助:
Tonghui LI(
), Tianli HUI, Tao ZHENG, Rui ZHANG, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG(
)
Received:2024-12-09
Revised:2025-01-07
Online:2025-07-25
Published:2025-08-13
Contact:
Xianghai MENG
摘要:
开发高效催化剂对于电解水析氢反应(HER)至关重要。在乙酸锰与氯化钠混合溶液刻蚀处理的泡沫镍(NF)上电沉积钯(Pd)纳米颗粒,合成了电解水析氢催化剂(PdMn/NF-45m),Pd含量为0.52%(质量分数)。该催化剂在宽pH范围内表现出优异的HER性能,在1 mol/L KOH、0.5 mol/L H2SO4和1 mol/L磷酸盐缓冲液(PBS)电解液中达到1000 mA/cm²电流密度时所需的过电位仅为302、67和645 mV。溶液刻蚀增加了NF的活性表面积,Mn掺杂降低了Pd的氢吸附自由能。此外,金属氢氧化物促进了水分解为吸附氢,进而与Pd活性位点结合生成氢气,提高了析氢效率。在1000 mA/cm²的电流密度下,该催化剂在1 mol/L和6 mol/L KOH电解液中均可稳定运行240 h;在0.5 mol/L H2SO4溶液中可稳定运行76 h;在1 mol/L PBS溶液中可稳定运行230 h。
中图分类号:
李同辉, 回天力, 郑涛, 张睿, 刘海燕, 刘植昌, 徐春明, 孟祥海. 氢氧化物协同钯双活性位点用于大电流和pH通用析氢反应[J]. 化工学报, 2025, 76(7): 3671-3685.
Tonghui LI, Tianli HUI, Tao ZHENG, Rui ZHANG, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Synergistic palladium double active sites with hydroxide for high current density and pH-universal hydrogen evolution reaction[J]. CIESC Journal, 2025, 76(7): 3671-3685.
图1 (a) 裸露NF,(b) PdMn/NF-15m,(c) PdMn/NF-30m,(d) PdMn/NF-45m,(e) PdMn/NF-60m的SEM图像;(f) ~ (j) PdMn/NF-45m的SEM图像和EDS元素分布图像;(k) PdMn/NF-45m的制备过程示意图
Fig.1 SEM images of (a) NF, (b) PdMn/NF-15m, (c) PdMn/NF-30m, (d) PdMn/NF-45m and (e) PdMn/NF-60m; (f) — (j) SEM and EDS elemental mapping images of PdMn/NF-45m; (k) Schematic illustration of the fabrication procedure of PdMn/NF-45m
图2 (a),(b) PdMn/NF-45m的TEM图像;(c) PdMn/NF-45m的SAED图像;(d) ~ (h)PdMn/NF-45m的TEM-EDS图
Fig.2 (a), (b) TEM images of PdMn/NF-45m; (c) SAED image of PdMn/NF-45m; (d) — (h) TEM-EDS images of PdMn/NF-45m
图4 PdMn/NF-45m XPS光谱的(a) 全谱,(b) Ni 2p,(c) Mn 2p,(d) Pd 3d,(e)O 1s,(f) C 1s;PdMn/NF-15m、PdMn/NF-30m、PdMn/NF-45m和PdMn/NF-60m的(g)Pd 3d和(h)Mn 2p XPS光谱
Fig.4 (a) Full survey spectrum, (b) Ni 2p, (c) Mn 2p, (d) Pd 3d, (e) O 1s, (f) C 1s XPS spectra of PdMn/NF-45m; (g) Pd 3d and (h) Mn 2p XPS spectra of PdMn/NF-15m, PdMn/NF-30m, PdMn/NF-45m and PdMn/NF-60m
图5 (a) PdMn/NF-45m和(b) NF的固液接触角;在1 mol/L KOH溶液中,以500 mA/cm²的电流密度对(e)裸露NF和(d)PdMn/NF-45m电极表面氢气释放行为的原位观察;(e) NF和(f) PdMn/NF-45m的固气接触角
Fig.5 Solid-liquid contact angle of (a) PdMn/NF-45m and (b) pristine NF; Insitu observation of hydrogen evolution behavior on the surface of (c)pristine NF and (d) PdMn/NF-45m electrodes under a current density of 500 mA/cm² in 1 mol/L KOH solution; Solid-gas contact angle of (e) pristine NF and (f) PdMn/NF-45m
图9 催化剂在碱性、酸性和中性稳定性测试后XRD、XPS和SEM对比图
Fig.9 Comparison of XRD, XPS and SEM after stability tests of the catalysts under alkaline, acidic and neutral conditions
| [1] | Liu S J, Wei Y, Wang M K, et al. The future of alkaline water splitting from the perspective of electrocatalysts-seizing today's opportunities[J]. Coordination Chemistry Reviews, 2025, 522: 216190. |
| [2] | Zhang W Z, Liu M H, Gu X, et al. Water electrolysis toward elevated temperature: advances, challenges and frontiers[J]. Chemical Reviews, 2023, 123(11): 7119-7192. |
| [3] | Karuppasamy L, Gurusamy L, Anandan S, et al. Graphene nanosheets supported high-defective Pd nanocrystals as an efficient electrocatalyst for hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 425: 131526. |
| [4] | Kou Z H, Liu Y N, Cui W J, et al. Electronic structure optimization of metal-phthalocyanine via confining atomic Ru for all-pH hydrogen evolution[J]. Energy & Environmental Science, 2024, 17(4): 1540-1548. |
| [5] | 陈佳丽, 陈丽娟, 郭晓慧, 等. 钌基析氢电催化剂的研究进展[J]. 材料研究与应用, 2024, 18(1): 51-61. |
| Chen J L, Chen L J, Guo X H, et al. Recent progress on Ru-based electrocatalysts for hydrogen evolution[J]. Materials Research and Application, 2024, 18(1): 51-61. | |
| [6] | Shi G Y, Tano T, Tryk D A, et al. Nanostructured Pt-NiFe oxide catalyst for hydrogen evolution reaction in alkaline electrolyte membrane water electrolyzers[J]. ACS Catalysis, 2024, 14(12): 9460-9468. |
| [7] | 陈凯, 吴锋顺, 肖顺, 等. PtRu/N掺杂碳电催化甲醇氧化及电解水析氢性能[J]. 无机化学学报, 2024, 40(7): 1357-1367. |
| Chen K, Wu F S, Xiao S, et al. PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. | |
| [8] | Li Z Y, Wang C Y, Liang Y Q, et al. Boosting hydrogen evolution performance of nanoporous Fe-Pd alloy electrocatalyst by metastable phase engineering[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123677. |
| [9] | Bawab B, Thalluri S M, Kolíbalová E, et al. Synergistic effect of Pd single atoms and nanoparticles deposited on carbon supports by ALD boosts alkaline hydrogen evolution reaction[J]. Chemical Engineering Journal, 2024, 482: 148959. |
| [10] | Xia B Y, Wu H B, Yan Y, et al. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity[J]. Journal of the American Chemical Society, 2013, 135(25): 9480-9485. |
| [11] | Zhang H, Jin M S, Liu H Y, et al. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen[J]. ACS Nano, 2011, 5(10): 8212-8222. |
| [12] | Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano, 2010, 4(1): 547-555. |
| [13] | Yin A X, Min X Q, Zhang Y W, et al. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes[J]. Journal of the American Chemical Society, 2011, 133(11): 3816-3819. |
| [14] | Li Q, Chen C, Luo W S, et al. In situ active site refreshing of electro-catalytic materials for ultra-durable hydrogen evolution at elevated current density[J]. Advanced Energy Materials, 2024, 14(17): 2304099. |
| [15] | Zhang Q, Jiao S H, Wang B R, et al. Accelerate the alkaline hydrogen evolution reaction of the heterostructural Ni2P@Ni(OH)2/NF by dispersing a trifle of Ru on the surface[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26329-26339. |
| [16] | 柴亚婷, 路家伟, 王蕊欣, 等. 碳纸自支撑N掺杂碳纳米管复合MoC/NiCo异质结构的电解水析氧性能[J]. 化工学报, 2023, 74(12): 4904-4913. |
| Chai Y T, Lu J W, Wang R X, et al. Carbon paper self-supported N-doped carbon nanotubes with MoC/NiCo heterostructures for electrolytic water oxygen evolution reaction[J]. CIESC Journal, 2023, 74(12): 4904-4913. | |
| [17] | Meng L X, Shang S Y, Liu S Y, et al. Cooperative effects between NiMo alloy enable highly efficient for all-pH-value and alkaline seawater hydrogen evolution[J]. Applied Catalysis B: Environment and Energy, 2024, 358: 124388. |
| [18] | Li S L, Zhou Z X, Liu G Q, et al. Confining ruthenium nanoparticles in MOF pores for high-performance hydrogen evolution reaction[J]. Chemical Engineering Journal, 2024, 493: 152820. |
| [19] | Hou S, Xu Y F, Chen Z G, et al. Ru single atoms tailoring the acidity of metallic tungsten dioxide for a boosted alkaline hydrogen evolution reaction[J]. ACS Catalysis, 2024, 14(11): 8238-8251. |
| [20] | Fan K C, Zong L B, Liu J X, et al. In situ reconstruction to surface sulfide adsorbed metal scaffold for enhanced electrocatalytic hydrogen evolution activity[J]. Advanced Energy Materials, 2024, 14(23): 2400052. |
| [21] | Huang T X, Cong X, Wu S S, et al. Visualizing the structural evolution of individual active sites in MoS2 during electrocatalytic hydrogen evolution reaction[J]. Nature Catalysis, 2024, 7: 646-654. |
| [22] | Liao Q D, You T, Liu X S, et al. Coupled plasma etching and electrodeposition of CoP/NiO nanosheets with surface reconstruction for water-splitting[J]. Journal of Materials Chemistry A, 2024, 12(16): 9830-9840. |
| [23] | Al-Salihy A, Liang C, Salah A, et al. Ultralow Ru-doped NiMoO4@Ni3(PO4)2 core-shell nanostructures for improved overall water splitting[J]. Chinese Journal of Catalysis, 2024, 60: 360-375. |
| [24] | Jiang H, Sun M Z, Wu S L, et al. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte[J]. Advanced Functional Materials, 2021, 31(43): 2104951. |
| [25] | Zhang X, Luo Z M, Yu P, et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution[J]. Nature Catalysis, 2018, 1: 460-468. |
| [26] | Ding J Q, Jiang X, Wang C K, et al. Epitaxial growth triggered core-shell Pd@RuP nanorods for high-efficiency electrocatalytic hydrogen evolution[J]. Journal of Energy Chemistry, 2023, 86: 510-517. |
| [27] | Jiang T, Yu L Y, Zhao Z J, et al. Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution[J]. Chemical Engineering Journal, 2022, 433: 133525. |
| [28] | Xu Y, Liu M Y, Ren T L, et al. Regulation of the surface micro-structure and crystal phase of Pd2B mesoporous nanoparticles for enhanced hydrogen evolution electrocatalysis[J]. Journal of Materials Chemistry A, 2021, 9(37): 21123-21131. |
| [29] | Zhao Z F, Yao X Y, Yu R P, et al. Enhanced electrocatalytic hydrodechlorination by modulating metal-support interaction and H generation of single-Pd-atom anchored NiFeP electrode[J]. Chemical Engineering Journal, 2024, 492: 152340. |
| [30] | Xiao M Y, Jiao L W, Xiang D Y, et al. Synergistic electronic structure tuning of self-assembled hollow hierarchical Ni-Fe-Co-P nanowire arrays on carbon cloth for enhanced water splitting[J]. Journal of Alloys and Compounds, 2023, 968: 171883. |
| [31] | Anantharaj S, Noda S, Jothi V R, et al. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media[J]. Angewandte Chemie International Edition, 2021, 60(35): 18981-19006. |
| [32] | Zhu Z J, Yin H J, He C T, et al. Ultrathin transition metal dichalcogenide/3D metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity[J]. Advanced Materials, 2018, 30(28): 1801171. |
| [33] | Wang C D, Humayun M, Debecker D P, et al. Electrocatalytic water oxidation with layered double hydroxides confining single atoms[J]. Coordination Chemistry Reviews, 2023, 478: 214973. |
| [34] | Shibli S M A, Sha M A. Development and characterization of electro active CeO2-RuO2 mixed oxide and its role in alkaline hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2018, 749: 250-261. |
| [35] | Chen X F, Li D, Wen Y, et al. Favorable surface etching of NiRuFe(OH) x in neutral hydrogen evolution reaction[J]. Catalysis Today, 2022, 400: 1-5. |
| [36] | Guo W, Kim J, Kim H, et al. Boosting hydrogen evolution on NiFeZn electrocatalyst by defect surface modulation using alkali etching[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2090-2100. |
| [37] | Jiang J H, Dou H J, Cao M R, et al. Amorphous nickel oxide electrodes with high-current-density electrocatalytic performance for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2024, 51: 887-894. |
| [38] | Xue M Y, Bao Y K, Xu X, et al. Eco-friendly and large-scale fabrication of NiMoN/Ni(OH)2/NF as highly efficient and stable alkaline hydrogen evolution reaction electrode[J]. International Journal of Hydrogen Energy, 2024, 82: 655-661. |
| [39] | Wang H J, Chen H Y, Mao Q Q, et al. A PdMn bimetallene for low-energy electrocatalytic hydrogen generation coupled with formate oxidation[J]. Chemical Communications, 2022, 58(94): 13115-13118. |
| [40] | 原荷峰, 马自在, 王淑敏, 等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841. |
| Yuan H F, Ma Z Z, Wang S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841. | |
| [41] | 赵娟, 吴梦成, 雷惊雷, 等. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584. |
| Zhao J, Wu M C, Lei J L, et al. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis[J]. CIESC Journal, 2022, 73(4): 1575-1584. | |
| [42] | Lv H, Xu D D, Sun L Z, et al. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis[J]. ACS Nano, 2019, 13(10): 12052-12061. |
| [1] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
| [2] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
| [3] | 向千禧, 杨小康, 孙嘉琦, 谢峰, 邵志刚. 质子交换膜水电解池分布特性研究[J]. 化工学报, 2024, 75(11): 4359-4368. |
| [4] | 马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030. |
| [5] | 李国荣, 邹翔达, 王启凡, 王欣, 唐中帜, 周扬杰, 唐电. 高Si掺杂RuO2材料的晶体结构、电子结构和导电性[J]. 化工学报, 2018, 69(8): 3717-3723. |
| [6] | 王学科, 王树博, 潘元, 谢晓峰, 黄海燕, 朱彤. 阳极进气湿度对质子交换膜水含量及电流密度分布影响[J]. 化工学报, 2015, 66(S2): 342-348. |
| [7] | 岳雯婷, 张丽, 刘秀明, 刘国桢, 刘云义. 电流密度对氯碱工业离子膜电解槽传递特性影响[J]. 化工学报, 2015, 66(3): 915-923. |
| [8] | 马洪运, 范永生, 王保国. 锌-空气电池电解液Zn2+浓度对析氢过程的影响[J]. 化工学报, 2014, 65(7): 2843-2848. |
| [9] | 王宏智, 黄波, 张卫国, 刘祥亭, 姚素薇. 深共融溶剂中电沉积Ni-Mo合金及其催化析氢性能[J]. 化工学报, 2014, 65(11): 4524-4529. |
| [10] | 曹梅娟, 于艳敏, 付海燕, 佘远斌. 取代基及中心金属离子对卟啉电子结构及催化活性的影响[J]. 化工学报, 2013, 64(S1): 88-97. |
| [11] | 李雪, 谢晓峰. Li2MnO3·LiMO2(M=Co,Ni)的电子结构与性能[J]. 化工学报, 2013, 64(S1): 188-193. |
| [12] | 李英, 周勤文, 周晓慧. PEMFC阴极扩散层结构特性对水淹影响的数值分析[J]. 化工学报, 2013, 64(4): 1424-1430. |
| [13] | 唐文超1,2,林 瑞1,2,黄 真1,2,曹春晖1,2,马建新1,2. 在线分区测试燃料电池内部电流密度分布研究进展[J]. 化工进展, 2013, 32(10): 2324-2335. |
| [14] | 曹涛锋, 林鸿, 陶文铨. 质子交换膜燃料电池温度和电流分布同步测定 [J]. 化工学报, 2011, 62(S1): 174-178. |
| [15] | 杨卫身;毕会锋;王斌;杨凤林 . 蒽醌染料活性艳蓝KN-R的ACF电极成对电解脱色 [J]. CIESC Journal, 2006, 57(11): 2714-2719. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号