化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4006-4030.DOI: 10.11949/0438-1157.20200481
收稿日期:
2020-05-06
修回日期:
2020-06-20
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
白羽
作者简介:
马佳欢(1995—),女,硕士研究生,基金资助:
Jiahuan MA(),Weiwei YANG,Yu BAI(),Kening SUN
Received:
2020-05-06
Revised:
2020-06-20
Online:
2020-09-05
Published:
2020-09-05
Contact:
Yu BAI
摘要:
氢能是一种具有发展前景的可再生清洁能源,电催化分解水是产生氢气的有效途径,设计高效、经济的分解水电催化剂对促进可再生能源的发展至关重要。二维金属有机框架材料(MOFs)具有独特的二维层状结构和灵活可调的化学组成,近年来被广泛应用于电催化分解水领域。二维金属有机框架材料可进一步衍生形成氧化物、磷化物、硫化物、金属-碳复合物等材料,也表现出良好的电催化分解水性能。通过组分调节和结构调控能有效地优化二维金属有机框架及其衍生的材料的本征活性和反应动力学特性,进而提高其电催化性能。此综述介绍了二维MOFs材料及其衍生物在电催化水分解领域的最新研究进展,并展望了其未来研究方向和发展空间。
中图分类号:
马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
Jiahuan MA, Weiwei YANG, Yu BAI, Kening SUN. Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting[J]. CIESC Journal, 2020, 71(9): 4006-4030.
70 | Chen B H, He X B, Yin F X, et al. MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery[J]. Adv. Funct. Mater., 2017, 27(37): 170059795. |
71 | Zhang W, Wang Y, Zheng H, et al. Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution[J]. ACS Nano, 2020, 14(2): 1971-1981. |
72 | Zhou J, Dou Y B, Zhou A W, et al. Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction[J]. ACS Energy Lett., 2018, 3(7): 1655-1661. |
73 | Guan C, Sumboja A, Wu H, et al. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries[J]. Adv. Mater., 2017, 29(44): 1704117. |
74 | Lin Y, Chen G, Wan H, et al. 2D free-standing nitrogen-doped Ni-Ni3S2@ carbon nanoplates derived from metal-organic frameworks for enhanced oxygen evolution reaction[J]. Small, 2019, 15(18): 1900348. |
75 | He P, Xie Y, Dou Y, et al. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Inter., 2019, 11(44): 41595-41601. |
76 | Zhao J Y, Wang R, Wang S, et al. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst[J]. J. Mater. Chem. A, 2019, 7(13): 7389-7395. |
77 | Wang H, Li Y, Li Y, et al. MOFs-derived hybrid nanosheet arrays of nitrogen-rich CoS2 and nitrogen-doped carbon for efficient hydrogen evolution in both alkaline and acidic media[J]. Int. J. Hydrogen Energy, 2018, 43(52): 23319-23326. |
78 | Chen W, Zhang Y, Chen G, et al. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis[J]. J. Colloid Inter. Sci., 2020, 560: 426-435. |
79 | Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am. Chem. Soc., 2012, 134(39): 16127-16130. |
80 | Zhai M, Wang F, Du H. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting[J]. ACS Appl. Mater. Inter., 2017, 9(46): 40171-40179. |
81 | Zhu W, Zhang W, Li Y, et al. Energy-efficient 1.67 V single- and 0.90 V dual-electrolyte based overall water-electrolysis devices enabled by a ZIF-L derived acid-base bifunctional cobalt phosphide nanoarray[J]. J. Mater. Chem. A, 2018, 6(47): 24277-24284. |
1 | Tiwari J, Sultan S, Myung C, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nat. Energy, 2018, 3(9): 773-782. |
2 | Sultan S, Tiwari J N, Singh A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Adv. Energy Mater., 2019, 9(22): 1900624. |
82 | Jiang M, Li J, Cai X, et al. Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction[J]. Nanoscale, 2018, 10(42): 19774-19780. |
83 | Zhang L, Wang X, Li A, et al. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535. |
3 | Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochim. Acta, 2002, 47(22): 3571-3594. |
4 | Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc. Rev., 2014, 43(18): 6555-6569. |
5 | Strmcnik D, Lopes P P, Genorio B, et al. Design principles for hydrogen evolution reaction catalyst materials[J]. Nano Energy, 2016, 29: 29-36. |
6 | Yang L, Xu H, Liu H, et al. Active site identification and evaluation criteria of in situ grown cote and nite nanoarrays for hydrogen evolution and oxygen evolution reactions[J]. Small, 2019, 3(5): 1900113. |
7 | Zheng Y, Jiao Y, Vasileff A, et al. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579. |
8 | Chen G, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Adv. Mater., 2018, 30(10): 1706279. |
9 | Dau H, Limberg C, Reier T, et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. Chemcatchem, 2010, 2(7): 724-761. |
84 | Li G, Zhang X, Zhang H, et al. Bottom-up MOF-intermediated synthesis of 3D hierarchical flower-like cobalt-based homobimetallic phophide composed of ultrathin nanosheets for highly efficient oxygen evolution reaction[J]. Appl. Catal. B: Environ., 2019, 249: 147-154. |
85 | Guan C, Xiao W, Wu H, et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting[J]. Nano Energy, 2018, 48: 73-80. |
86 | Zhou Q, Wang J, Guo F, et al. Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting[J]. Electrochim. Acta, 2019, 318: 244-251. |
87 | Xu Y, Tu W G, Zhang B W, et al. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting[J]. Adv. Mater., 2017, 29(11): 1605957. |
10 | Rosen J, Hutchings G S, Jiao F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2013, 135(11): 4516-4521. |
11 | Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1): 83-89. |
12 | Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochim. Acta, 1984, 29(11): 1503-1512. |
13 | Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
14 | Wu H B, Lou X WDavid). Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges[J]. Sci. Adv., 2017, 3(12): eaap9252. |
15 | Chen L Y, Luque R, Li Y W. Controllable design of tunable nanostructures inside metal-organic frameworks[J]. Chem. Soc. Rew., 2017, 46(41): 4614-4630. |
16 | Dang S, Zhu Q L, Xu Q, et al. Nanomaterials derived from metal-organic frameworks[J]. Nat. Rev. Mater., 2017, 3(1): 17075. |
17 | 谭雨薇, 龙涛, 宋雪婷, 等. 基于金属有机骨架的电催化产氢研究进展[J]. 应用化工, 2019, 48(9): 2226-2230. |
Tan Y W, Long T, Song X T, et al. Research progress on electrocatalytic hydrogen production based on metal-organic framework[J]. Appl. Chem. Industry, 2019, 48(9): 2226-2230. | |
88 | Wang T, Kou Z, Mu S, et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries[J]. Adv. Funct. Mater., 2018, 28(5): 1705048. |
89 | Sun H, Lian Y B, Yang C, et al. Hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting[J]. Energy Environ. Sci., 2018, 11(9): 2363-2371. |
18 | 玄翠娟, 王杰, 朱静, 等. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2016, 33(1): 149-164. |
Xuan C J, Wang J, Zhu J, et al. Recent progress of metal organic frameworks-based nanomaterials for electrocatalysis[J]. Acta Physico-Chimica Sinica, 2016, 33(1): 149-164. | |
19 | Zhang H, Nai J, Yu L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017, 1(1): 77-107. |
20 | Zhao M, Wang Y, Ma Q, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27(45): 7372-7378. |
90 | Huo M L, Wang B, Zhang C C, et al. 2D metal-organic framework derived CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves for efficient bifunctional oxygen electrocatalyst and zinc-air batteries[J]. Chem. A Eur. J., 2019, 25(55): 12780-12788. |
91 | Xu Q C, Jiang H, Li Y H, et al. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries[J]. Appl. Catal. B: Environ., 2019, 256: 117893. |
21 | Simon-Yarza T, Giménez-Marqués M, Mrimi R, et al. A smart metal-organic framework nanomaterial for lung targeting[J]. Angew. Chem. Int. Ed., 2017, 56(49): 15565-15569. |
22 | Flügel E A, Ranft A, Haase F, et al. Synthetic routes toward MOF nanomorphologies[J]. J. Mater. Chem., 2012, 22(20): 10119-10133. |
23 | Zhao M, Lu Q, Ma Q, et al. Two-dimensional metal-organic framework nanosheets[J]. Small Methods, 2017, 1(1/2): 1600030. |
92 | Guan C, Sumboja A, Zang W, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Mater., 2019, 16: 243-250. |
93 | Rodenas T, Beeg S, Spanos I, et al. 2D metal organic framework graphitic carbon nanocomposites as precursors for high-performance O2-evolution electrocatalysts[J]. Adv. Energy Mater., 2018, 8(35): 1802404. |
94 | Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catal., 2016, 6(12): 8069-8097. |
95 | Chen T, Li S, Wen J, et al. Metal organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage[J]. ACS Appl. Mater. Inter., 2017, 9(41): 35927-35935. |
96 | Dong Q, Wang Q, Dai Z, et al. MOF-derived Zn doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction[J]. ACS Appl. Mater. Inter., 2016, 8(40): 26902-26907. |
97 | Wu H, Wang J, Yan J, et al. MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts[J]. Nanoscale, 2019, 11: 20144. |
98 | Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84. |
99 | Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed., 2013, 52(9): 2474-2477. |
24 | Tan C, Cao X, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chem. Rev., 2017, 117(9): 6225-6331. |
25 | 王佛泉. 二维层状金属有机骨架的制备方法及研究进展[J]. 云南化工, 2019, 46(3): 50-51. |
Wang F Q. Preparation methods and research progress of two-dimensional layered organometallic skeleton[J]. Yunnan Chemical Technology, 2019, 46(3): 50-51. | |
100 | Zou Z, Cai M, Zhao X, et al. Defective metal-organic framework derivative by room-temperature exfoliation and reduction for highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(23): 14011- 14018. |
101 | Sun T, Xu L, Wang D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Res., 2019, 12(9): 2067-2080. |
26 | Cao L, Lin Z, Peng F, et al. Self-supporting metal-organic layers as single-site solid catalysts[J]. Angew. Chem. Int. Ed., 2016, 55(16): 4962-4966. |
27 | Zhao W, Peng J, Wang W, et al. Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices[J]. Coordin. Chem. Rev., 2018, 377: 44-63. |
102 | Zang W, Sumboja A, Ma Y, et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes[J]. ACS Catal., 2018, 8(10): 8961-8969. |
103 | Kong D, Wang Y, Huang S, et al. 3D self-branched zinc-cobalt oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis[J]. Energy Storage Mater., 2019, 23: 653-663. |
28 | Wang H, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.[J]. Chem. Soc. Rew., 2020, 49(5): 1414-1448. |
29 | Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
30 | Sakata Y, Furukawa S, Kondo M, et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing[J]. Science, 2013, 339(6116): 193-196. |
31 | Kambe T, Sakamoto R, Hoshiko K, et al. π-Conjugated nickel bis (dithiolene) complex nanosheet[J]. J. Am. Chem. Soc., 2013, 135(7): 2462-2465. |
32 | Cliffe M J, Castillo-Martínez E, Wu Y, et al. Metal-organic nanosheets formed via defect-mediated transformation of a hafnium metal-organic framework[J]. J. Am. Chem. Soc., 2017, 139(15): 5397-5404. |
33 | Chaudhari A K, Kim H J, Han I, et al. Optochemically responsive 2D nanosheets of a 3D metal–organic framework material[J]. Adv. Mater., 2017, 29(27): 1701463. |
34 | Jiang Y, Liu H, Tan X, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries[J]. ACS Appl. Mater. Inter., 2017, 9(30): 25239-25249. |
35 | Huang L, Zhang X, Han Y, et al. In situ synthesis of ultrathin metal-organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts[J]. J. Mater. Chem. A, 2017, 5(35): 18610-18617. |
36 | Shi Q, Fu S, Zhu C, et al. Energetic metal-organic frameworks for electrochemical oxygen evolution[J]. Mater. Horiz., 2019, 6(4): 684-702. |
37 | Jayaramulu K, Masa J, Morales D M, et al. Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution[J]. Adv. Sci., 2018, 5(11): 1801029. |
38 | Huang J, Li Y, Huang R K, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 130(17): 4722-4726. |
39 | Xu Y, Li B, Zheng S, et al. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution[J]. J. Mater. Chem. A, 2018, 6(44): 22070-22076. |
40 | Jia H, Yao Y, Zhao J, et al. A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis[J]. J. Mater. Chem. A, 2018, 6(3): 1188-1195. |
41 | Song X, Peng C, Fei H. Enhanced electrocatalytic oxygen evolution by exfoliation of a metal-organic framework containing cationic one-dimensional [Co4(OH)2]6+ chains[J]. ACS Appl. Mater. Inter., 2018, 1(6): 2446-2451. |
42 | Zhao S, Wang Y, Dong J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat. Energy, 2016, 1(12): 1-10. |
43 | Pang W, Shao B, Tan X Q, et al. Exfoliation of metal-organic frameworks into efficient single-layer metal-organic nanosheet electrocatalysts by the synergistic action of host-guest interactions and sonication[J]. Nanoscale, 2020, 12(6): 3623-3629. |
44 | Liang H, Ge G, He Z, et al. Self-dissociation-assembly of ultrathin metal-organic framework nanosheet arrays for effcient oxygen evolution[J]. Nano Energy, 2020, 68: 104296. |
45 | Li F L, Wang P, Huang X, et al. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angew. Chem. Int. Ed., 2019, 131(21): 7125-7130. |
46 | Hai G, Jia X, Zhang K, et al. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets[J]. Nano Energy, 2018, 44: 345-352. |
47 | Sun F, Wang G, Ding Y, et al. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction[J]. Adv. Energy Mater., 2018, 8(21): 1800584. |
48 | Lin H W, Raja D S, Chuah X F, et al. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities[J]. Appl. Catal. B: Environ., 2019, 258: 118023. |
49 | Raja D S, Lin H W, Lu S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities[J]. Nano Energy, 2019, 57: 1-13. |
50 | Cao C S, Ma D D, Xu Q, et al. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation[J]. Adv. Funct. Mater., 2019, 29(6): 1807418. |
51 | Luo S W, Gu R, Shi P H, et al. π-π interaction boosts catalytic oxygen evolution by self-supporting metal-organic frameworks[J]. J. Power Sources, 2020, 448: 227406. |
52 | Li W, Fang W, Wu C, et al. Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J. Mater. Chem. A, 2020, 8(7): 3658-3666. |
53 | Xie M, Ma Y, Lin D, et al. Bimetal-organic framework MIL-53 (Co-Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020, 12(1): 67-71. |
54 | Zhou W, Huang D D, Wu Y P, et al. Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2019, 58(13): 4227-4231. |
55 | Qian Q Z, Li Y P, Liu Y, et al. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis[J]. Adv. Mater., 2019, 31(23): 1901139. |
56 | Ding M, Chen J, Jiang M, et al. Ultrathin trimetallic metal-organic frameworks nanosheetsfor highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7: 14163-14168. |
57 | Xue Z, Liu K, Liu Q, et al. Missing-linker metal-organic frameworks for oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 5048. |
58 | Zhu D D, Liu J L, Zhao Y Q, et al. Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution[J]. Small, 2019, 15(14): 1805511. |
59 | Zheng X, Cao Y, Liu D, et al. Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. ACS Appl. Mater. Inter., 2019, 11(17): 15662-15669. |
60 | Hu W C, Shi Y, Zhou Y, et al. Plasmonic hot charge carriers activated Ni centres of metal-organic frameworks for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(17): 10601-10609. |
61 | Xia Z, Fang J, Zhang X, et al. Pt nanoparticles embedded metal-organic framework nanosheets: a synergistic strategy towards bifunctional oxygen electrocatalysis[J]. Appl. Catal. B: Environ., 2019, 245: 389-398. |
62 | Zhu D, Liu J, Wang L, et al. 2D metal-organic framework/Ni(OH)2 heterostructure for enhanced oxygen evolution reaction[J]. Nanoscale, 2019, 11(8): 3599-3605. |
63 | Rui K, Zhao G Q, Chen Y Q, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv. Funct. Mater., 2018, 28(26): 1801554. |
64 | Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nat. Commun., 2017, 8: 15341. |
65 | Wang B, Shang J, Guo C, et al. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays[J]. Small, 2019, 15(6): 1804761. |
66 | Xu J, Zhao Y, Li M, et al. A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction[J]. Electrochim. Acta, 2019, 307: 275-284. |
67 | Hu Q, Huang X W, Wang Z Y, et al. Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic frameworks nanosheets to enable high-output oxygen evolution[J]. J. Mater. Chem. A, 2020, 8(4): 2140-2146. |
68 | Chen W X, Zhang Y W, Chen G L, et al. Mesoporous cobalt-iron-organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst[J]. J. Mater. Chem. A, 2019, 7(7): 3090-3100. |
69 | Li Y, Lu M, Wu Y, et al. Trimetallic metal-organic framework derived electrocatalysts for efficient overall water splitting[J]. Adv. Mater. Inter., 2019, 6(12): 1900290. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||