化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2848-2858.DOI: 10.11949/0438-1157.20241275
李文亮1(
), 纪成2, 梁晨1, 吴思辰1, 陈石林1, 孙巍2, 翟持1(
)
收稿日期:2024-11-09
修回日期:2025-02-08
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
翟持
作者简介:李文亮(1999—),男,硕士研究生,2455364688@qq.com
Wenliang LI1(
), Cheng JI2, Chen LIANG1, Sichen WU1, Shilin CHEN1, Wei SUN2, Chi ZHAI1(
)
Received:2024-11-09
Revised:2025-02-08
Online:2025-06-25
Published:2025-07-09
Contact:
Chi ZHAI
摘要:
针对青霉素发酵过程中的浓度难题,提出了一种基于时序差分记忆网络(temporal difference memory network,TDMN)的在线软测量方法。鉴于青霉素发酵过程数据的多批次、非平稳特性,采用滑动窗口进行预处理,利用TDMN模型捕捉局部特征,并通过增量学习实现模型的实时更新,以实现青霉素浓度在线软测量。实验结果表明,该模型在青霉素浓度预测中表现出显著的准确性,与人工神经网络(artificial neural network,ANN)、循环神经网络(recurrent neural network,RNN)和长短期记忆网络(long short-term memory,LSTM)等传统方法相比,具有更高的实时性和适应性,能够有效跟踪发酵过程中的浓度变化。通过与其他模型的比较,发现基于增量学习的方法显著降低了预测误差,提高了预测精度。该方法不仅能够动态更新模型,还能有效跟踪青霉素浓度的变化,为发酵过程状态的监测与控制提供了新的解决方案,具有重要的应用价值和行业意义。
中图分类号:
李文亮, 纪成, 梁晨, 吴思辰, 陈石林, 孙巍, 翟持. 基于TDMN的青霉素浓度在线软测量[J]. 化工学报, 2025, 76(6): 2848-2858.
Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN[J]. CIESC Journal, 2025, 76(6): 2848-2858.
| 变量编号 | 变量描述 | 变量编号 | 变量描述 |
|---|---|---|---|
| 1 | 通气速率/(L/h) | 13 | 容器质量/kg |
| 2 | 糖进料速率/(L/h) | 14 | pH |
| 3 | 酸流量/(L/h) | 15 | 温度/K |
| 4 | 基础流率/(L/h) | 16 | 产生的热量/kJ |
| 5 | 加热/冷却水流量/(L/h) | 17 | 尾气中二氧化碳含量/% |
| 6 | 采暖水流量/(L/h) | 18 | PAA流/(L/h) |
| 7 | 注射用水/稀释水流量/(L/h) | 19 | 油流/(L/h) |
| 8 | 气头压力/bar | 20 | 耗氧速率/(g/min) |
| 9 | 倾倒培养基流量/(L/h) | 21 | 废气中的氧气百分比/% |
| 10 | 底物浓度/(g/h) | 22 | 析碳速率/(g/h) |
| 11 | 溶解氧浓度/(mg/h) | 23 | 青霉素浓度/(g/L) |
| 12 | 容器体积/L |
表1 青霉素工业发酵过程中工艺变量的描述
Table 1 Description of process variables in the industrial penicillin fermentation process
| 变量编号 | 变量描述 | 变量编号 | 变量描述 |
|---|---|---|---|
| 1 | 通气速率/(L/h) | 13 | 容器质量/kg |
| 2 | 糖进料速率/(L/h) | 14 | pH |
| 3 | 酸流量/(L/h) | 15 | 温度/K |
| 4 | 基础流率/(L/h) | 16 | 产生的热量/kJ |
| 5 | 加热/冷却水流量/(L/h) | 17 | 尾气中二氧化碳含量/% |
| 6 | 采暖水流量/(L/h) | 18 | PAA流/(L/h) |
| 7 | 注射用水/稀释水流量/(L/h) | 19 | 油流/(L/h) |
| 8 | 气头压力/bar | 20 | 耗氧速率/(g/min) |
| 9 | 倾倒培养基流量/(L/h) | 21 | 废气中的氧气百分比/% |
| 10 | 底物浓度/(g/h) | 22 | 析碳速率/(g/h) |
| 11 | 溶解氧浓度/(mg/h) | 23 | 青霉素浓度/(g/L) |
| 12 | 容器体积/L |
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.274 | 0.131 | 0.337 | 0.843 |
| RNN | 0.169 | 0.069 | 0.238 | 0.927 |
| LSTM | 0.156 | 0.047 | 0.203 | 0.939 |
| TDMN | 0.127 | 0.037 | 0.176 | 0.956 |
表2 不同方法对60个供试批次青霉素浓度的平均预测评价指标
Table 2 Average prediction evaluation indexes of penicillin concentration of 60 test batches by different methods
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.274 | 0.131 | 0.337 | 0.843 |
| RNN | 0.169 | 0.069 | 0.238 | 0.927 |
| LSTM | 0.156 | 0.047 | 0.203 | 0.939 |
| TDMN | 0.127 | 0.037 | 0.176 | 0.956 |
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.219 | 0.105 | 0.324 | 0.886 |
| RNN | 0.153 | 0.054 | 0.232 | 0.952 |
| LSTM | 0.119 | 0.035 | 0.187 | 0.961 |
| TDMN | 0.095 | 0.022 | 0.148 | 0.999 |
表3 四种模型在线测试结果
Table 3 Online test results of four models
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.219 | 0.105 | 0.324 | 0.886 |
| RNN | 0.153 | 0.054 | 0.232 | 0.952 |
| LSTM | 0.119 | 0.035 | 0.187 | 0.961 |
| TDMN | 0.095 | 0.022 | 0.148 | 0.999 |
| [1] | Wang Q J, Zhang Z, Xu G R, et al. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water[J]. Journal of Hazardous Materials, 2021, 413: 125385. |
| [2] | Yang L, Zhang S H, Chen Z Q, et al. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge[J]. Bioresource Technology, 2016, 204: 185-191. |
| [3] | Jiang Q C, Wang Z W, Yan S F, et al. Data-driven soft sensing for batch processes using neural network-based deep quality-relevant representation learning[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(4): 602-611. |
| [4] | 张梦轩, 刘洪辰, 王敏, 等. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1776. |
| Zhang M X, Liu H C, Wang M, et al. Intelligence hybrid modeling method and applications in chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. | |
| [5] | Knight M A, Hutchings M R, White P C L, et al. A mechanistic model captures livestock trading, disease dynamics, and compensatory behaviour in response to control measures[J]. Journal of Theoretical Biology, 2022, 539: 111059. |
| [6] | 曾贲, 房霄, 孔德帅, 等. 一种数据驱动的对抗博弈智能体建模方法[J]. 系统仿真学报, 2021, 33(12): 2838-2845. |
| Zeng B, Fang X, Kong D S, et al. A data-driven modeling method for game adversity agent[J]. Journal of System Simulation, 2021, 33(12): 2838-2845. | |
| [7] | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
| Yao Y M, Luo W J, Dai Y Y. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
| [8] | 戚子豪, 钟文琪, 陈曦, 等. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
| Qi Z H, Zhong W Q, Chen X, et al. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling[J]. CIESC Journal, 2022, 73(5): 2039-2051. | |
| [9] | 张磊, 贺丁, 刘琳琳, 等. 基于模型的化工产品设计方法: 综述与展望[J]. 化工进展, 2021, 40(4): 1746-1754. |
| Zhang L, He D, Liu L L, et al. Model-based chemical product design: review and perspectives[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1746-1754. | |
| [10] | Shokry A, Pérez-Moya M, Graells M, et al. Data-driven dynamic modeling of batch processes having different initial conditions and missing measurements[C]//27th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier, 2017: 433-438. |
| [11] | Mi X J, Lv T X, Tian Y, et al. Multi-sensor data fusion based on soft likelihood functions and OWA aggregation and its application in target recognition system[J]. ISA Transactions, 2021, 112: 137-149. |
| [12] | 陈琳, 周利, 吉旭. 基于深度学习的催化裂化过程建模方法[J]. 西安石油大学学报(自然科学版), 2023, 38(4): 94-103. |
| Chen L, Zhou L, Ji X. Modelling method based on deep learning for fluid catalytic cracking processes[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(4): 94-103. | |
| [13] | Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
| [14] | He Y L, Tian Y, Xu Y, et al. Novel soft sensor development using echo state network integrated with singular value decomposition: application to complex chemical processes[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200: 103981. |
| [15] | Mota R, Nadri M, Hammouri H. Observer design for implicit state affine systems up to output injection[J]. IFAC Proceedings Volumes, 2011, 44(1): 697-702. |
| [16] | Wang W, Yang C H, Han J, et al. A soft sensor modeling method with dynamic time-delay estimation and its application in wastewater treatment plant[J]. Biochemical Engineering Journal, 2021, 172: 108048. |
| [17] | Wang Y L, Liu D J, Liu C L, et al. Dynamic historical information incorporated attention deep learning model for industrial soft sensor modeling[J]. Advanced Engineering Informatics, 2022, 52: 101590. |
| [18] | Li X Y, Yi X H, Liu Z H, et al. Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system[J]. Journal of Cleaner Production, 2021, 294: 126343. |
| [19] | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
| [20] | Mei P, Li M, Zhang Q, et al. Prediction model of drinking water source quality with potential industrial-agricultural pollution based on CNN-GRU-attention[J]. Journal of Hydrology, 2022, 610: 127934. |
| [21] | Liu C L, Wang K, Ye L J, et al. Deep learning with neighborhood preserving embedding regularization and its application for soft sensor in an industrial hydrocracking process[J]. Information Sciences, 2021, 567: 42-57. |
| [22] | Zheng B W, Zhou D W, Ye H J, et al. Preserving locality in vision transformers for class incremental learning[C]//2023 IEEE International Conference on Multimedia and Expo (ICME). Brisbane, Australia: IEEE, 2023: 1157-1162. |
| [23] | Wang Y M, Chen X Y, Wang X, et al. Radar detection self-evolution based on incremental learning in time-varying clutter environments[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2523613. |
| [24] | Xie J J, Pan B, Xu X, et al. MiSSNet: memory-inspired semantic segmentation augmentation network for class-incremental learning in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5607913. |
| [25] | Ji C, Ma F Y, Wang J D, et al. Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development[J]. Computers & Chemical Engineering, 2023, 170: 108125. |
| [26] | Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7233-7242. |
| [27] | Wang Y B, Long M S, Wang J M, et al. PredRNN[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 879-888. |
| [28] | Goldrick S, Duran-Villalobos C A, Jankauskas K, et al. Modern day monitoring and control challenges outlined on an industrial-scale benchmark fermentation process[J]. Computers & Chemical Engineering, 2019, 130: 106471. |
| [29] | Birol G, Cenk Ü, Ali Ç. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
| [30] | Melo A, Câmara M M, Clavijo N, et al. Open benchmarks for assessment of process monitoring and fault diagnosis techniques: a review and critical analysis[J]. Computers & Chemical Engineering, 2022, 165: 107964. |
| [31] | Wang Z X, He Q P, Wang J. Comparison of variable selection methods for PLS-based soft sensor modeling[J]. Journal of Process Control, 2015, 26: 56-72. |
| [32] | Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London: Routledge, 2018 |
| [33] | Jin H P, Chen X G, Wang L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7320-7345. |
| [1] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [2] | 马爱华, 赵帅, 王林, 常明慧. 太阳能吸收制冷循环动态特性仿真方法研究[J]. 化工学报, 2025, 76(S1): 318-325. |
| [3] | 吴成云, 孙浩然. 民用飞机空调系统性能仿真与燃油代偿损失研究[J]. 化工学报, 2025, 76(S1): 351-359. |
| [4] | 李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369. |
| [5] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [6] | 黄灏, 王文, 李沛昀. 三角转子膨胀机串联运行特性研究[J]. 化工学报, 2025, 76(S1): 435-443. |
| [7] | 张文锋, 郭玮, 张新玉, 曹昊敏, 丁国良. 铝管铝翅片换热器模型开发及软件实现[J]. 化工学报, 2025, 76(S1): 84-92. |
| [8] | 刘豪, 王林, 丁昊, 耿嘉怡. R1150+R1234ze(E)二元体系223.15~253.15 K汽液相平衡研究[J]. 化工学报, 2025, 76(S1): 1-8. |
| [9] | 李欣怡, 王功明, 王自鹏, 乔俊飞. 基于事件触发的污水处理过程水质智能预测研究[J]. 化工学报, 2025, 76(6): 2828-2837. |
| [10] | 熊敏, 刘冬妹, 王智超, 周利, 吉旭. 变负荷条件下绿氨生产操作参数的调控与优化[J]. 化工学报, 2025, 76(6): 2791-2801. |
| [11] | 张涵川, 尚超, 吕文祥, 黄德先, 张亚宁. 基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法[J]. 化工学报, 2025, 76(6): 2781-2790. |
| [12] | 张豪豪, 郭莉, 李馨怡, 陈锦溢, 华超, 陆平. 隔板精馏塔的优化设计及动态控制研究进展[J]. 化工学报, 2025, 76(6): 2434-2450. |
| [13] | 吴与伦, 王振雷, 王昕. 基于对比学习的乙烯裂解炉运行工况识别方法[J]. 化工学报, 2025, 76(6): 2733-2742. |
| [14] | 张京新, 何皎洁, 蔡庆旺, 康子怡, 杨玉思, 王彤, 曹仙桃, 杨利伟. 基于二次分解和BiLSTM的污水厂出水COD浓度预测[J]. 化工学报, 2025, 76(6): 2859-2871. |
| [15] | 娄嘉诚, 常福城, 刘也铭, 李志斌, 李熙, 李会雄. 1000 MW超超临界直流锅炉水冷壁瞬态响应特性的建模与仿真研究[J]. 化工学报, 2025, 76(6): 2638-2651. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号