化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3373-3387.DOI: 10.11949/0438-1157.20241514
刘翌晗1(
), 王艳1(
), 马浩1, 王团结2, 戴翠红2
收稿日期:2024-12-26
修回日期:2025-03-03
出版日期:2025-07-25
发布日期:2025-08-13
通讯作者:
王艳
作者简介:刘翌晗(2001—),男,硕士研究生,6231913033@stu.jiangnan.edu.cn
基金资助:
Yihan LIU1(
), Yan WANG1(
), Hao MA1, Tuanjie WANG2, Cuihong DAI2
Received:2024-12-26
Revised:2025-03-03
Online:2025-07-25
Published:2025-08-13
Contact:
Yan WANG
摘要:
实际化工工业过程数据往往存在多重共线性、高度非线性等多重特性,这会严重影响传统软测量模型对关键质量变量的预测精度。针对这一局限性,提出了一种分布式非线性映射和并行输入的双向长短记忆(distributed nonlinear mapping and parallel input bidirectional long short-term memory,DNMPI-BiLSTM)软测量模型。在所提策略中,首先为了阐述过程变量与质量变量之间的关联性,采用互信息以及最大相关最小冗余方法对输入数据集进行分类。随后,为了充分挖掘工业过程内部所包含的高度复杂的非线性关系,利用深度极限学习机的隐藏层对子过程变量空间进行非线性映射到高维空间。最后,将三类数据的非线性映射结果并行,建立了基于分布式非线性映射和并行输入的DNMPI-BiLSTM软测量模型,以提升模型对复杂工业过程质量变量的预测能力。通过三个工业案例验证所提方法的有效性,仿真结果表明,所提出的基于分布式非线性映射和并行输入的BiLSTM软测量建模方法的预测精度优于其他先进模型。
中图分类号:
刘翌晗, 王艳, 马浩, 王团结, 戴翠红. 基于分布式非线性映射和并行输入的BiLSTM软测量建模方法[J]. 化工学报, 2025, 76(7): 3373-3387.
Yihan LIU, Yan WANG, Hao MA, Tuanjie WANG, Cuihong DAI. A BiLSTM-based soft sensing modeling method with distributed nonlinear mapping and parallel inputs[J]. CIESC Journal, 2025, 76(7): 3373-3387.
| 输入 | 变量描述 |
|---|---|
| 顶部温度 | |
| 顶部压强 | |
| 回流流量 | |
| 流向下一工艺的流量 | |
| 第6层板的温度 | |
| 底部温度A | |
| 底部温度B |
表1 脱丁烷塔工艺过程变量说明
Table 1 Description of the variables for the DC
| 输入 | 变量描述 |
|---|---|
| 顶部温度 | |
| 顶部压强 | |
| 回流流量 | |
| 流向下一工艺的流量 | |
| 第6层板的温度 | |
| 底部温度A | |
| 底部温度B |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.04439 | 0.0621 | 0.887 |
| LSTM | 0.04099 | 0.0525 | 0.921 |
| BiLSTM | 0.03353 | 0.0465 | 0.938 |
| PSO-BiLSTM | 0.03172 | 0.0448 | 0.942 |
| NM-BiLSTM | 0.01867 | 0.0280 | 0.977 |
| DNMPI-BiLSTM | 0.00581 | 0.0088 | 0.997 |
表2 6种软测量模型在脱丁烷塔数据集的预测性能
Table 2 Prediction performance of six soft sensing models in the DC dataset
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.04439 | 0.0621 | 0.887 |
| LSTM | 0.04099 | 0.0525 | 0.921 |
| BiLSTM | 0.03353 | 0.0465 | 0.938 |
| PSO-BiLSTM | 0.03172 | 0.0448 | 0.942 |
| NM-BiLSTM | 0.01867 | 0.0280 | 0.977 |
| DNMPI-BiLSTM | 0.00581 | 0.0088 | 0.997 |
| 输入 | 变量描述 |
|---|---|
| MEA气体流量 | |
| MEA一次气流 | |
| MEA二次气流 | |
| SWS气体流量 | |
| SWS气流 | |
| SO2浓度 |
表3 SRU过程变量说明
Table 3 Description of the variables for the SRU
| 输入 | 变量描述 |
|---|---|
| MEA气体流量 | |
| MEA一次气流 | |
| MEA二次气流 | |
| SWS气体流量 | |
| SWS气流 | |
| SO2浓度 |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.01612 | 0.0221 | 0.856 |
| LSTM | 0.01233 | 0.0178 | 0.905 |
| BiLSTM | 0.01059 | 0.0170 | 0.914 |
| PSO-BiLSTM | 0.00959 | 0.0166 | 0.918 |
| NM-BiLSTM | 0.00792 | 0.0145 | 0.938 |
| DNMPI-BiLSTM | 0.00503 | 0.0135 | 0.946 |
表4 6种软测量模型在硫回收装置数据集的预测性能
Table 4 Prediction performance of six different soft sensing models in the SRU dataset
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.01612 | 0.0221 | 0.856 |
| LSTM | 0.01233 | 0.0178 | 0.905 |
| BiLSTM | 0.01059 | 0.0170 | 0.914 |
| PSO-BiLSTM | 0.00959 | 0.0166 | 0.918 |
| NM-BiLSTM | 0.00792 | 0.0145 | 0.938 |
| DNMPI-BiLSTM | 0.00503 | 0.0135 | 0.946 |
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.02610 | 0.0353 | 0.856 |
| LSTM | 0.02021 | 0.0282 | 0.921 |
| BiLSTM | 0.01819 | 0.0268 | 0.929 |
| PSO-BiLSTM | 0.01702 | 0.0254 | 0.936 |
| NM-BiLSTM | 0.01379 | 0.0190 | 0.964 |
| DNMPI-BiLSTM | 0.01149 | 0.0162 | 0.974 |
表5 6种软测量模型在金银花提取过程的预测性能
Table 5 Prediction performance of six soft sensing models in the extraction process of honeysuckle
| 模型 | MAE | RMSE | |
|---|---|---|---|
| GRU | 0.02610 | 0.0353 | 0.856 |
| LSTM | 0.02021 | 0.0282 | 0.921 |
| BiLSTM | 0.01819 | 0.0268 | 0.929 |
| PSO-BiLSTM | 0.01702 | 0.0254 | 0.936 |
| NM-BiLSTM | 0.01379 | 0.0190 | 0.964 |
| DNMPI-BiLSTM | 0.01149 | 0.0162 | 0.974 |
| [1] | Liu C L, Wang K, Wang Y L, et al. Learning deep multimanifold structure feature representation for quality prediction with an industrial application[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5849-5858. |
| [2] | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
| [3] | 李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633. |
| Li X Y, Sui L, Ma J X, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633. | |
| [4] | 卫升, 王艳, 纪志成. 多工况生产过程下的即时学习能耗预测建模方法[J]. 系统仿真学报, 2024, 36(6): 1378-1391. |
| Wei S, Wang Y, Ji Z C. Just-in-time learning energy consumption predictive modeling method in multi-condition production process[J]. Journal of System Simulation, 2024, 36(6): 1378-1391. | |
| [5] | Burnett A C, Anderson J, Davidson K J, et al. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression[J]. Journal of Experimental Botany, 2021, 72(18): 6175-6189. |
| [6] | Kavousi-Fard A, Samet H, Marzbani F. A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting[J]. Expert Systems with Applications, 2014, 41(13): 6047-6056. |
| [7] | Babu C N, Reddy B E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J]. Applied Soft Computing, 2014, 23: 27-38. |
| [8] | Li L, Gu Z H, Xu W X, et al. Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling[J]. Energy, 2023, 272: 127015. |
| [9] | 李文华, 叶洪涛, 罗文广, 等. 基于MHSA-LSTM的软测量建模及其在化工过程中的应用[J]. 化工学报, 2024, 75(12): 4654-4665. |
| Li W H, Ye H T, Luo W G, et al. Soft sensor modeling based on MHSA-LSTM and its application in chemical process[J]. CIESC Journal, 2024, 75(12): 4654-4665. | |
| [10] | Guo Z Y, Yang C Y, Wang D S, et al. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations[J]. Process Safety and Environmental Protection, 2023, 173: 604-613. |
| [11] | Deng W, Liu H L, Xu J J, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7319-7327. |
| [12] | 杨逸俊, 王振雷, 王昕. 基于最近邻与神经网络融合模型的软测量建模方法[J]. 化工学报, 2020, 71(12): 5696-5705. |
| Yang Y J, Wang Z L, Wang X. Soft sensor modeling method based on hybrid model of nearest neighbor and neural network[J]. CIESC Journal, 2020, 71(12): 5696-5705. | |
| [13] | Feng J, Yang L T, Ren B C, et al. Tensor recurrent neural network with differential privacy[J]. IEEE Transactions on Computers, 2023, 73(3): 683-693. |
| [14] | Yu Y, Si X S, Hu C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. |
| [15] | Palangi H, Deng L, Shen Y L, et al. Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 694-707. |
| [16] | 刘光星, 马一豪. 基于LSTM-RF的电动钻机绞车齿轮箱故障诊断[J]. 振动与冲击, 2024, 43(21): 156-162, 230. |
| Liu G X, Ma Y H. Fault diagnosis of electric drill winch gearbox based on LSTM-RF[J]. Journal of Vibration and Shock, 2024, 43(21): 156-162, 230. | |
| [17] | Ren L, Dong J B, Wang X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. |
| [18] | 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784. |
| Wang X, Wu J, Liu C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784. | |
| [19] | Zhang X Q, Wang X, Li H Y, et al. Monthly runoff prediction based on a coupled VMD-SSA-BiLSTM model[J]. Scientific Reports, 2023, 13(1): 13149. |
| [20] | Peng S M, Zhu J C, Wu T Z, et al. Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model[J]. Energy, 2024, 298: 131345. |
| [21] | Sekhar C, Dahiya R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand[J]. Energy, 2023, 268: 126660. |
| [22] | 顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215. |
| Gu X R, Liu S S, Yang S Y. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model[J]. CIESC Journal, 2023, 74(3): 1205-1215. | |
| [23] | Zhu B, Chen Z S, He Y L, et al. A novel nonlinear functional expansion based PLS (FEPLS) and its soft sensor application[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 108-117. |
| [24] | 田业. 面向复杂流程工业的数据驱动软测量建模研究及应用[D]. 北京: 北京化工大学, 2023. |
| Tian Y. Research and application of data-driven soft sensor modeling for complex industrial process[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [25] | He Y L, Wang P F, Zhu Q X. Improved Bi-LSTM with distributed nonlinear extensions and parallel inputs for soft sensing[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3748-3755. |
| [26] | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166, 192. |
| Yao X, Wang X D, Zhang Y X, et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2): 161-166, 192. | |
| [27] | Peng H C, Long F H, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. |
| [28] | Dai Y, Pang J, Rui X K, et al. Thermal error prediction model of high-speed motorized spindle based on DELM network optimized by weighted mean of vectors algorithm[J]. Case Studies in Thermal Engineering, 2023, 47: 103054. |
| [29] | 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670. |
| Xu R, Liang X, Qi J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42(7): 1640-1670. | |
| [30] | An G Q, Chen L B, Tan J X, et al. Ultra-short-term wind power prediction based on PVMD-ESMA-DELM[J]. Energy Reports, 2022, 8: 8574-8588. |
| [31] | Khataei Maragheh H, Gharehchopogh F S, Majidzadeh K, et al. A new hybrid based on long short-term memory network with spotted hyena optimization algorithm for multi-label text classification[J]. Mathematics, 2022, 10(3): 488. |
| [32] | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
| [33] | Pani A K, Amin K G, Mohanta H K. Soft sensing of product quality in the debutanizer column with principal component analysis and feed-forward artificial neural network[J]. Alexandria Engineering Journal, 2016, 55(2): 1667-1674. |
| [34] | Fatima S A, Zabiri H, Ali Ammar Taqvi S, et al. Intelligent control of an industrial debutanizer column[J]. Chemical Engineering & Technology, 2022, 45(4): 667-677. |
| [35] | Yuan X F, Zhou J, Huang B, et al. Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3721-3730. |
| [36] | Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control Engineering Practice, 2005, 13(4):499-508. |
| [37] | Mahdy A, Shoaib A, Gamal Mohamed Ahmed M, et al. Optimization of sulfur recovery and tail gas treatment units using aspen HYSYS and MATLAB integration[J]. Egyptian Journal of Chemistry, 2023, 66(5): 303-314. |
| [38] | Fazlollahi F, Asadizadeh S, Khoshooei M A, et al. Investigating efficiency improvement in sulfur recovery unit using process simulation and numerical modeling[J]. Oil & Gas Science and Technology-Revue D'IFP Energies Nouvelles, 2021, 76: 18. |
| [1] | 李征, 庄铠泽, 赵东杰, 宋燕星, 王功明. 事件驱动的深度信念网络软测量模型设计方法[J]. 化工学报, 2025, 76(4): 1693-1701. |
| [2] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| [3] | 王大芬, 唐莉丽, 张鑫焱, 聂春雨, 李明珠, 吴菁. 基于时差的多输出tri-training异构软测量建模[J]. 化工学报, 2025, 76(3): 1143-1155. |
| [4] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
| [5] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
| [6] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
| [7] | 李文华, 叶洪涛, 罗文广, 刘乙奇. 基于MHSA-LSTM的软测量建模及其在化工过程中的应用[J]. 化工学报, 2024, 75(12): 4654-4665. |
| [8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
| [9] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
| [10] | 李祥宇, 隋璘, 马君霞, 熊伟丽. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633. |
| [11] | 罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模[J]. 化工学报, 2022, 73(3): 1270-1279. |
| [12] | 陈忠圣, 朱梅玉, 贺彦林, 徐圆, 朱群雄. 基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用[J]. 化工学报, 2021, 72(3): 1529-1538. |
| [13] | 刘聪, 谢莉, 杨慧中. 基于改进DPC的青霉素发酵过程多模型软测量建模[J]. 化工学报, 2021, 72(3): 1606-1615. |
| [14] | 李东, 黄道平, 刘乙奇. 基于协同训练的半监督异构自适应软测量建模方法的研究[J]. 化工学报, 2020, 71(5): 2128-2138. |
| [15] | 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号