化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4622-4633.DOI: 10.11949/0438-1157.20230893

• 过程系统工程 • 上一篇    下一篇

基于时序迁移与双流加权的ONLSTM软测量建模

李祥宇1(), 隋璘1, 马君霞1,2, 熊伟丽1,2()   

  1. 1.江南大学物联网工程学院,江苏 无锡 214122
    2.江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 收稿日期:2023-08-29 修回日期:2023-11-14 出版日期:2023-11-25 发布日期:2024-01-22
  • 通讯作者: 熊伟丽
  • 作者简介:李祥宇(1998—),男,硕士研究生,lixiangyu915@163.com
  • 基金资助:
    国家自然科学基金项目(61773182);国家重点研发计划子课题项目(2018YFC1603705-03);江南大学双一流学科与支撑学科协同发展支持计划项目(QGJC20230203)

ONLSTM soft sensor modeling based on time series transfer and dual stream weighting

Xiangyu LI1(), Lin SUI1, Junxia MA1,2, Weili XIONG1,2()   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    2.Key Laboratory of Advanced Process Control for Industry (Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2023-08-29 Revised:2023-11-14 Online:2023-11-25 Published:2024-01-22
  • Contact: Weili XIONG

摘要:

实际化工过程建模具有多变量、非线性和动态性等特点,会导致模型复杂度提高且提取特征时产生冗余信息和时序分布漂移问题,因此提出一种基于时序迁移和双流加权的有序神经元长短时记忆网络(ONLSTM)模型。首先,利用时序迁移对特征分布进行匹配以自适应表征特征分布信息,采用划分特征分布差异最大时间域进行训练,减小时序分布失配,从而解决时序分布漂移问题;其次,在时序迁移框架内嵌入双流加权ONLSTM模型,通过对ONLSTM主遗忘门和主输入门分别加权,更精确控制传递信息;进一步结合双流结构设计双信息流控制相应门控单元,减小参数调节过程中的耦合影响,降低模型复杂度,提高其预测性能;最后,将所提模型应用于硫回收过程以及某火电厂脱硫过程排放烟气SO2浓度软测量建模,并与其他深度学习网络进行对比,验证了模型有效性。

关键词: 时间序列迁移, 加权有序神经元长短时记忆网络, 双流结构, 软测量, 神经网络, 过程控制, 动态建模

Abstract:

The modeling of actual chemical processes has characteristics such as multi-variability, nonlinearity, and dynamism, which can lead to increased model complexity and the generation of redundant information and temporal distribution shift when extracting features. Therefore, an ordered neurons long short-term memory network (ONLSTM) model based on time series transfer and dual stream weighting is proposed. First, temporal transfer is used to match feature distributions to adaptively represent feature distribution information and training is performed by dividing the time domain with the largest difference in feature distribution to reduce timing distribution mismatch, thereby solving the problem of timing distribution drift. Secondly, a dual stream weighted ONLSTM model is embedded within the time series transfer framework, and the ONLSTM main forgetting gate and main input gate are weighted separately to more accurately control the transmission of information. Further combining the dual flow structure to design the corresponding gating unit for dual information flow control, reducing the coupling effect during parameter adjustment, reducing model complexity, and improving its predictive performance. Finally, the proposed model was applied to soft sensing modeling of SO2 concentration in the sulfur recovery process and the flue gas emissions from a certain thermal power plant desulfurization process, and compared with other deep learning networks to verify the effectiveness of the model.

Key words: time series transfer, weighted ordered neurons long short-term memory, dual stream, soft sensor, neural networks, process control, dynamic modeling

中图分类号: