化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4155-4164.DOI: 10.11949/0438-1157.20250114

• 智能过程工程 • 上一篇    下一篇

基于交互监测与连通性模型的化工过程故障传播分析

钱小毅(), 王利鑫, 姜兴宇, 孙天贺, 赵毅, 王一飞   

  1. 沈阳工程学院辽宁省电网节能与控制重点实验室,辽宁 沈阳 110136
  • 收稿日期:2025-02-04 修回日期:2025-03-07 出版日期:2025-08-25 发布日期:2025-09-17
  • 通讯作者: 钱小毅
  • 作者简介:钱小毅(1989—),男,博士,副教授,qianxiaoyi123@163.com
  • 基金资助:
    辽宁省教育厅基本科研项目(LJ222411632051);辽宁省教育厅基本科研项目(LJKQZ2021085);辽宁省自然科学基金项目(2022-BS-222)

Fault propagation analysis of chemical process based on interactive monitoring and connectivity model

Xiaoyi QIAN(), Lixin WANG, Xingyu JIANG, Tianhe SUN, Yi ZHAO, Yifei WANG   

  1. Liaoning Key Laboratory of Power Grid Energy Conservation and Control, Shenyang Institute of Engineering, Shenyang 110136, Liaoning, China
  • Received:2025-02-04 Revised:2025-03-07 Online:2025-08-25 Published:2025-09-17
  • Contact: Xiaoyi QIAN

摘要:

复杂化工过程中监测变量存在自相关与互相关的时空耦合关系,导致在故障传播路径识别过程中容易出现冗余信息,造成路径的错误识别。为此,提出一种融合监测数据与过程知识的故障传播路径回溯方法,以基于k近邻的故障传播路径分析方法为框架,引入分布式交互监测以确定故障潜在区域并剔除冗余变量,从工艺过程中提取基于无向邻接矩阵的连通性模型,给故障路径回溯提供逻辑指导。通过Tennessee Eastman过程与合成氨工艺流程的故障案例,与传统传递熵方法、基于k近邻的故障传播路径分析方法相比,验证了所提方法有效地提高了故障路径识别精度和效率,同时减少了冗余备选路径。

关键词: 化工过程, 故障传播路径, k近邻, 分布式监测, 连通性模型

Abstract:

There is a spatiotemporal coupling relationship between autocorrelation and mutual correlation in the monitoring variables in complex chemical processes, which leads to redundant information in the process of fault propagation path identification, resulting in incorrect path identification. Therefore, a fault propagation path backtracking method that integrates monitoring data and process knowledge is proposed. Distributed interactive monitoring is introduced based on the fault propagation path analysis of k-nearest neighbors to determine the potential fault area and eliminate redundant variables. A connectivity model based on an undirected adjacency matrix is extracted from the process to provide logical guidance for fault path backtracking. Compared with the traditional transfer entropy method and the k-nearest neighbor method, the proposed method, through the fault cases of the Tennessee Eastman process and the ammonia synthesis process, effectively improves the accuracy of fault path identification and reduces redundant paths.

Key words: chemical processes, fault propagation path, k-nearest neighbor, interactive monitoring, connectivity model

中图分类号: