化工学报 ›› 2024, Vol. 75 ›› Issue (3): 1052-1064.DOI: 10.11949/0438-1157.20240133
• 焦点问题·热点论坛 • 上一篇
李诗浩1(), 吴振华2, 赵展烽1, 吴洪1, 杨冬2, 石家福2(), 姜忠义1()
收稿日期:
2024-01-29
修回日期:
2024-02-29
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
石家福,姜忠义
作者简介:
李诗浩(1994—),男,博士研究生,lishihao@tju.edu.cn
基金资助:
Shihao LI1(), Zhenhua WU2, Zhanfeng ZHAO1, Hong WU1, Dong YANG2, Jiafu SHI2(), Zhongyi JIANG1()
Received:
2024-01-29
Revised:
2024-02-29
Online:
2024-03-25
Published:
2024-05-11
Contact:
Jiafu SHI, Zhongyi JIANG
摘要:
随着“绿色化学”和“可持续发展”概念以及“碳达峰、碳中和”(双碳)目标的相继提出与推进,化学工业逐步进入绿色化、高端化、智能化发展新阶段。对于包含反应的化工过程有非常经典的“三传一反”理论,以反应动力学为核心,以动量传递、热量传递与质量传递为基础,揭示了物质、能量传递与化学反应的协同强化规律,对化工领域的发展具有重要和深远意义。近年来,由于光能、电能等清洁能源以及绿色生物制造、光电化学工程等新学科引入化工反应过程中,以电子传递、质子传递和分子传递为代表的三类传递现象得到了广泛关注和大量研究,为“三传一反”理论注入了新的活力。在此背景下,尝试将电子传递、质子传递和分子传递三类现象进行分析和介绍,针对不同化学反应的特点,初步总结了通过电子传递、质子传递和分子传递过程的单独或协同强化,以实现传递过程与化学反应过程的高度匹配,进而实现化学反应效率的显著提升。
中图分类号:
李诗浩, 吴振华, 赵展烽, 吴洪, 杨冬, 石家福, 姜忠义. 化工过程中的电子传递、质子传递和分子传递[J]. 化工学报, 2024, 75(3): 1052-1064.
Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes[J]. CIESC Journal, 2024, 75(3): 1052-1064.
1 | 张锁江, 彭孝军, 朱旺喜, 等. 化学工程发展战略:高端化、绿色化、智能化[M]. 北京: 化学工业出版社, 2023. |
Zhang S J, Peng X J, Zhu W X, et al. Chemical Engineering Development Strategy: Premium, Greenization, Intelligentization[M]. Beijing: Chemical Industry Press, 2023. | |
2 | 朱贻安,周兴贵,袁渭康. 多相催化微观动力学与催化剂理性设计[J]. 化学反应工程与工艺, 2014, 30(3): 205-211. |
Zhu Y A, Zhou X G, Yuan W K. Microkinetics of heterogeneous catalysis and rational catalyst design[J]. Chemical Reaction Engineering and Technology, 2014, 30(3): 205-211. | |
3 | 段学志,陈文尧,周兴贵,等. 催化剂微尺度结构与反应动力学[J]. 化工学报, 2019, 70(10): 3645-3650. |
Duan X Z, Chen W Y, Zhou X G, et al. Microstructures and reaction kinetics of catalysts[J]. CIESC Journal, 2019, 70(10): 3645-3650. | |
4 | Verkhovskaya M L, Belevich N, Euro L, et al. Real-time electron transfer in respiratory complex Ⅰ[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3763-3767. |
5 | Sansone G, Kelkensberg F, Pérez-Torres J F, et al. Electron localization following attosecond molecular photoionization[J]. Nature, 2010, 465: 763-766. |
6 | Wu J, Magrakvelidze M, Schmidt L P H, et al. Understanding the role of phase in chemical bond breaking with coincidence angular streaking[J]. Nature Communications, 2013, 4: 2177. |
7 | Chen S, Li K, Zhao F, et al. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production[J]. Nature Communications, 2016, 7: 13169. |
8 | Beaulieu S, Comby A, Clergerie A, et al. Attosecond-resolved photoionization of chiral molecules[J]. Science, 2017, 358(6368): 1288-1294. |
9 | Cheng C, Zhang J J, Zhu B C, et al. Verifying the charge-transfer mechanism in s-scheme heterojunctions using femtosecond transient absorption spectroscopy[J]. Angewandte Chemie International Edition, 2023, 62(8): e202218688. |
10 | Guo M J, Talebian-Kiakalaieh A, Xia B Q, et al. Cu7S4/M x S y (M=Cd, Ni, and Mn) Janus atomic junctions for plasmonic energy upconversion boosted multi-functional photocatalysis[J]. Advanced Functional Materials, 2023, 33(46): 2304912. |
11 | Jay R M, Banerjee A, Leitner T, et al. Tracking C—H activation with orbital resolution[J]. Science, 2023, 380(6648): 955-960. |
12 | Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes[J]. Nature Materials, 2008, 7: 75-83. |
13 | Sun Y J, Yan Y, Wang Y Y, et al. High proton conduction in a new alkali metal-templated open-framework aluminophosphate[J]. Chemical Communications, 2015, 51(45): 9317-9319. |
14 | Karmakar A, Illathvalappil R, Anothumakkool B, et al. Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials[J]. Angewandte Chemie International Edition, 2016, 55(36): 10667-10671. |
15 | Ye Y X, Gong L S, Xiang S C, et al. Metal-organic frameworks as a versatile platform for proton conductors[J]. Advanced Materials, 2020, 32(21): e1907090. |
16 | Shi B B, Pang X, Li S N, et al. Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity[J]. Nature Communications, 2022, 13: 6666. |
17 | Gu J, Jiang L L, Ismail S A, et al. Surface protonic conduction on oxide ceramics: mechanism, materials, and method for characterization[J]. Advanced Materials Interfaces, 2023, 10(1): 2201764. |
18 | Tse E C M, Barile C J, Kirchschlager N A, et al. Proton transfer dynamics control the mechanism of O2 reduction by a non-precious metal electrocatalyst[J]. Nature Materials, 2016, 15: 754-759. |
19 | Fang J W, Debnath T, Bhattacharyya S, et al. Photobase effect for just-in-time delivery in photocatalytic hydrogen generation[J]. Nature Communications, 2020, 11: 5179. |
20 | Karaiskakis G, Gavril D. Determination of diffusion coefficients by gas chromatography[J]. Journal of Chromatography. A, 2004, 1037(1/2): 147-189. |
21 | Rohling J H, Shen J, Wang C, et al. Determination of binary diffusion coefficients of gases using photothermal deflection technique[J]. Applied Physics B, 2007, 87(2): 355-362. |
22 | Reitmeier S J, Mukti R R, Jentys A, et al. Surface transport processes and sticking probability of aromatic molecules in HZSM-5[J]. The Journal of Physical Chemistry C, 2008, 112(7): 2538-2544. |
23 | Gobin O C, Reitmeier S J, Jentys A, et al. Diffusion pathways of benzene, toluene and p-xylene in MFI[J]. Microporous and Mesoporous Materials, 2009, 125(1/2): 3-10. |
24 | Teixeira A R, Chang C C, Coogan T, et al. Dominance of surface barriers in molecular transport through silicalite-1[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25545-25555. |
25 | Teixeira A R, Qi X D, Conner W C, et al. 2D surface structures in small zeolite MFI crystals[J]. Chemistry of Materials, 2015, 27(13): 4650-4660. |
26 | Zhang W D, Wu S L, Ren S R, et al. The modeling and experimental studies on the diffusion coefficient of CO2 in saline water[J]. Journal of CO2 Utilization, 2015, 11: 49-53. |
27 | Li S Y, Li Z M, Dong Q W. Diffusion coefficients of supercritical CO2 in oil-saturated cores under low permeability reservoir conditions[J]. Journal of CO2 Utilization, 2016, 14: 47-60. |
28 | He M Y, Zhang K, Guan Y J, et al. Green carbon science: fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
29 | Shih C F, Zhang T, Li J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
30 | Li Z, Li R G, Jing H J, et al. Blocking the reverse reactions of overall water splitting on a Rh/GaN-ZnO photocatalyst modified with Al2O3 [J]. Nature Catalysis, 2023, 6: 80-88. |
31 | Du J, Li F, Sun L C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50(4): 2663-2695. |
32 | Jia S H, Wu L M, Xu L, et al. Multicomponent catalyst design for CO2/N2/NO x electroreduction[J]. Industrial Chemistry & Materials, 2023, 1(1): 93-105. |
33 | Guo P P, He Z H, Yang S Y, et al. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes[J]. Green Chemistry, 2022, 24(4): 1527-1533. |
34 | 蒲田, 胡建清, 周红军, 等. 炼化工业碳减排路径与电化工/电供能技术发展综述[J]. 石油科学通报, 2023, 8(4): 445-460. |
Pu T, Hu J Q, Zhou H J, et al. Low-carbon pathways and electrochemical/electrification technologies development in the refining-chemical industry: a review[J]. Petroleum Science Bulletin, 2023, 8(4): 445-460. | |
35 | Zhu Z X, Jiang T L, Ali M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. |
36 | Deng Z N, Jiang H, Hu Y J, et al. Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries[J]. AIChE Journal, 2018, 64(6): 1965-1974. |
37 | Wang B, Iocozzia J, Zhang M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells[J]. Chemical Society Reviews, 2019, 48(18): 4854-4891. |
38 | Aboagye D, Djellabi R, Medina F, et al. Radical-mediated photocatalysis for lignocellulosic biomass conversion into value-added chemicals and hydrogen: facts, opportunities and challenges[J]. Angewandte Chemie International Edition, 2023, 62(36): e202301909. |
39 | Qian S S, Wang C S, Liu W J, et al. An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule[J]. Journal of Materials Chemistry, 2011, 21(13): 4945-4952. |
40 | Leech M C, Lam K. A practical guide to electrosynthesis[J]. Nature Reviews Chemistry, 2022, 6: 275-286. |
41 | Liu Z H, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
42 | Wang Y, Hu Y, Xu J, et al. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen[J]. Journal of Membrane Science, 2007, 293(1/2): 133-141. |
43 | Peng Y, Ma L N, Xu P, et al. High-performance production of N-acetyl-D-neuraminic acid with whole cells of fast-growing Vibrio natriegens via a thermal strategy[J]. Journal of Agricultural and Food Chemistry, 2023, 71(50): 20198-20209. |
44 | Hu L Z, Guo S Q, Wang B, et al. Bio-valorization of C1 gaseous substrates into bioalcohols: potentials and challenges in reducing carbon emissions[J]. Biotechnology Advances, 2022, 59: 107954. |
45 | Wei P F, Gao D F, Liu T F, et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis[J]. Nature Nanotechnology, 2023, 18: 299-306. |
46 | Prather K L J. Accelerating and expanding nature to address its greatest challenges[J]. Nature Catalysis, 2020, 3: 181-183. |
47 | Cui Z H, Zhang S D, Zhang S Y, et al. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design[J]. Chinese Journal of Chemical Engineering, 2022, 41: 6-21. |
48 | Xie G H, Li P, Zhao Z J, et al. Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation[J]. Angewandte Chemie (International Ed. in English), 2018, 57(51): 16708-16712. |
49 | Uehlein N, Lovisolo C, Siefritz F, et al. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions[J]. Nature, 2003, 425: 734-737. |
50 | Burlacot A, Dao O, Auroy P, et al. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism[J]. Nature, 2022, 605: 366-371. |
51 | Zhang Z, Wen L P, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6: 622-639. |
52 | Guan Q F, Han Z M, Yang K P, et al. Sustainable double-network structural materials for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537. |
53 | Wang W W, Ji Z N, Zhang D L, et al. TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system[J]. Ceramics International, 2021, 47(13): 19180-19190. |
54 | Han H J, Yang Y, Liu J F, et al. Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation[J]. ACS Applied Energy Materials, 2020, 3(11): 11275-11284. |
55 | Wei Y, Zhang X, Zhao Z L, et al. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution[J]. Electrochimica Acta, 2019, 297: 553-563. |
56 | Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
57 | Zhou W M, Wang Z Q, Huang H Q, et al. Significant enhancement in hydrogen evolution rate of 2D bismuth oxychloride lamellar membrane photocatalyst with cellulose nanofibers[J]. Chemical Engineering Journal, 2023, 456: 140933. |
58 | Liu J X, Li R, Zu X, et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8[J]. Chemical Engineering Journal, 2019, 371: 796-803. |
59 | Oshikiri T, Ueno K, Misawa H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation[J]. Angewandte Chemie International Edition, 2016, 55(12): 3942-3946. |
60 | Tan Z, Chen S F, Peng X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018, 360(6388): 518-521. |
61 | Nam Y, Lim J H, Ko K C, et al. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect[J]. Journal of Materials Chemistry A, 2019, 7(23): 13833-13859. |
62 | Shi H N, Long S R, Hu S, et al. Interfacial charge transfer in OD/2D defect-rich heterostructures for efficient solar-driven CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 245: 760-769. |
63 | Arcus V L, van der Kamp M W, Pudney C R, et al. Enzyme evolution and the temperature dependence of enzyme catalysis[J]. Current Opinion in Structural Biology, 2020, 65: 96-101. |
64 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
65 | Su Y D, Cestellos-Blanco S, Kim J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
66 | Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
67 | Woolerton T W, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133.. |
68 | Woolerton T W, Sheard S, Pierce E, et al. CO2 photoreduction at enzyme-modified metal oxide nanoparticles[J]. Energy & Environmental Science, 2011, 4(7): 2393-2399. |
69 | Nichols E M, Gallagher J J, Liu C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
70 | Liu C, Gallagher J J, Sakimoto K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639. |
71 | Huang X Q, Wang B J, Wang Y J, et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation[J]. Nature, 2020, 584: 69-74. |
72 | Wang X D, Saba T, Yiu H H P, et al. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways[J]. Chem, 2017, 2(5): 621-654. |
73 | Zhang S H, Shi J F, Sun Y Y, et al. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J]. ACS Catalysis, 2019, 9(5): 3913-3925. |
74 | Zhang S H, Zhang Y S, Chen Y, et al. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis[J]. ACS Catalysis, 2021, 11(1): 476-483. |
75 | Cai Z Y, Shi J F, Wu Y Z, et al. Chloroplast-inspired artificial photosynthetic capsules for efficient and sustainable enzymatic hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17114-17123. |
76 | Sun Y Y, Shi J F, Wang Z, et al. Thylakoid membrane-inspired capsules with fortified cofactor shuttling for enzyme-photocoupled catalysis[J]. Journal of the American Chemical Society, 2022, 144(9): 4168-4177. |
77 | Fu H G, Cao J Z, Qiao T Z, et al. An asymmetric sp3-sp3 cross-electrophile coupling using 'ene'-reductases[J]. Nature, 2022, 610: 302-307. |
78 | Jiang R K, Xue X, Zhao F, et al. Process parameter and kinetic study for the azidation of a zidovudine intermediate with sodium azide in microreactors[J]. Chemical Engineering Journal, 2022, 429: 132207. |
79 | Yao S T, Liao Y, Pan R Z, et al. Programmed co-assembly of DNA-peptide hybrid microdroplets by phase separation[J]. Chinese Chemical Letters, 2022, 33(3): 1545-1549. |
80 | Zhu Y C, Xu J, Zhang H Y, et al. A micro gas chromatography column fabricated by ultrafast laser-assisted chemical etching[J]. Sensors and Actuators B: Chemical, 2023, 375: 132814. |
81 | Mo Y M, Lu Z H, Rughoobur G, et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions[J]. Science, 2020, 368(6497): 1352-1357. |
82 | Kang J, Zhou L, Duan X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3): 745-758. |
83 | Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462): 226-231. |
84 | Yang L J, Shui J L, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials, 2019, 31(13), e1804799. |
85 | Zeng T, Gautam R P, Barile C J, et al. Nitrile-facilitated proton transfer for enhanced oxygen reduction by hybrid electrocatalysts[J]. ACS Catalysis, 2020, 10(21): 13149-13155. |
[1] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[2] | 曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428. |
[3] | 咸国义, 陈立芳, 漆志文. 基于DFT的环己酮肟液相贝克曼重排机理研究[J]. 化工学报, 2024, 75(1): 302-311. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[15] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 857
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||