化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5322-5335.DOI: 10.11949/0438-1157.20250230

• 能源和环境工程 • 上一篇    下一篇

间接内重整板式固体氧化物燃料电池的温度分布特性及改进

王世学1,2(), 于在辉1, 朱禹1,2, 蹇季廷1   

  1. 1.天津大学机械工程学院,天津 300350
    2.天津大学国家储能技术产教融合创新平台,天津 300350
  • 收稿日期:2025-03-10 修回日期:2025-03-27 出版日期:2025-10-25 发布日期:2025-11-25
  • 通讯作者: 王世学
  • 作者简介:王世学(1964—), 男, 博士, 教授, wangshixue_64@tju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB4001504)

Temperature distribution characteristics and improvement of indirect internal reforming planar solid oxide fuel cells

Shixue WANG1,2(), Zaihui YU1, Yu ZHU1,2, Jiting JIAN1   

  1. 1.School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
    2.National Industry-Education Platform of Energy Storage (Tianjin University), Tianjin 300350, China
  • Received:2025-03-10 Revised:2025-03-27 Online:2025-10-25 Published:2025-11-25
  • Contact: Shixue WANG

摘要:

间接内重整固体氧化物燃料电池(IIR-SOFC)在紧邻电池片处增设重整多孔介质层,利用电池产生的热量对燃料气进行重整,为电池提供氢气。但受重整反应影响,电池内部温度分布不均匀,从而影响电池的发电性能和寿命。采用数值模拟方法得到板式间接内重整SOFC的燃料和空气的流动方向、运行温度、重整气流速对电池温度分布及发电特性的影响,并在重整流道内采用催化剂载量梯度分布方式改进温度分布。结果显示,阴、阳极流道内气体顺流情况下电池最大温差比逆流时小;随着工作温度的升高,电池内的最大温差逐渐增大;随着重整混合气入口流速的增加,温度梯度及功率密度先增大后减小。在改变重整流道内的催化剂载量分布后,电池内温度分布趋向均匀,温度梯度明显减小,最大温差减小约60%。

关键词: 间接内重整, 燃料电池, 梯度负载, 热力学, 数值模拟

Abstract:

The indirect internal reforming solid oxide fuel cell (IIR-SOFC) is equipped with a reforming porous medium layer adjacent to the cell, utilizing the heat generated by the cell to reform the fuel gas and provide hydrogen for the cell. However, the reforming reaction affects the temperature distribution within the cell, making it uneven, which in turn affects the cell's power generation performance and lifespan. In this paper, the numerical simulation method was used to obtain the effects of fuel and air flow directions, operating temperature, and reforming gas flow rate on the temperature distribution and power generation characteristics of planar indirect internal reforming SOFC. A gradient distribution of catalyst loading in the reforming channel was used to improve the temperature distribution. The results show that the maximum temperature difference in the cell is smaller when the gas in the anode and cathode channels flows in the same direction than when it flows in the opposite direction. As the operating temperature increases, the maximum temperature difference inside the cell gradually increases. As the flow rate of the reforming mixed gas at the inlet increases, the temperature gradient and power density first increase and then decrease. After changing the distribution of catalyst loading in the reforming channel, the temperature distribution in the battery tends to be uniform, the temperature gradient is significantly reduced, and the maximum temperature difference is reduced by about 60%.

Key words: indirect internal reforming, fuel cells, gradient load, thermodynamics, numerical simulation

中图分类号: