化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4670-4682.DOI: 10.11949/0438-1157.20250261
收稿日期:2025-03-17
修回日期:2025-04-19
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
林渠成
作者简介:王杰(1997—),男,硕士研究生,jiew102@163.com
基金资助:
Jie WANG(
), Qucheng LIN(
), Xianming ZHANG
Received:2025-03-17
Revised:2025-04-19
Online:2025-09-25
Published:2025-10-23
Contact:
Qucheng LIN
摘要:
混合气体多级膜分离是一种高效的分离技术,通过多级膜系统的协同作用实现混合气体中各组分的高效分离。但对其进行优化设计时需要建立复杂的混合整数非线性规划(MINLP)模型,求解困难。本文提出了一种混合气体多级膜分离系统的全局优化方法,使用分解算法将复杂的MINLP问题分解为混合整数规划(MIP)问题和非线性规划(NLP)问题,通过MIP模型枚举分离序列,引入多线程并行计算方法,将各线程中的分离序列代入两个不同精度的NLP模型中序贯优化,综合所有优化结果后确定全局最优解。通过天然气脱硫案例得到的膜分离系统年总成本(tac)较文献最优结果降低7.35%,通过高炉煤气中捕集CO₂案例验证了该方法可拓展至可变压力的膜分离系统优化。
中图分类号:
王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682.
Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm[J]. CIESC Journal, 2025, 76(9): 4670-4682.
| 参数 | 数值 |
|---|---|
| 初始流量/(kmol/h) | 36 |
| 进料压力/MPa | 3.500 |
| 渗透压力/MPa | 0.105 |
| 温度/K | 313.15 |
| CO2纯度/% | 2 |
| CH4回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 19, CH4: 73,C2+: 7, H2S: 1 |
| 渗透率/(kmol/(m2·MPa·h)) | 0.10656/0.005328/0.0021312/0.085248 |
表1 案例1相关参数
Table 1 Related parameters of example 1
| 参数 | 数值 |
|---|---|
| 初始流量/(kmol/h) | 36 |
| 进料压力/MPa | 3.500 |
| 渗透压力/MPa | 0.105 |
| 温度/K | 313.15 |
| CO2纯度/% | 2 |
| CH4回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 19, CH4: 73,C2+: 7, H2S: 1 |
| 渗透率/(kmol/(m2·MPa·h)) | 0.10656/0.005328/0.0021312/0.085248 |
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 压缩机成本/(USD/kW) | 1000 | 原始天然气成本/(USD/1000 m3) | 35 | ||
| 固定成本的年化因子/% | 27 | 营运资本比率/% | 10 | ||
| 天然气总热值/(MJ/m3) | 43 | 膜使用寿命/a | 3 | ||
| 膜成本/(USD/m2) | 200 | 年工作时间/(d/a) | 300 | ||
| 膜更换费用/(USD/m2) | 90 | 压缩机效率/% | 70 | ||
| 维修率/(%/a) | 5 |
表2 案例1目标函数相关参数
Table 2 Objective function-related parameters of Example 1
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 压缩机成本/(USD/kW) | 1000 | 原始天然气成本/(USD/1000 m3) | 35 | ||
| 固定成本的年化因子/% | 27 | 营运资本比率/% | 10 | ||
| 天然气总热值/(MJ/m3) | 43 | 膜使用寿命/a | 3 | ||
| 膜成本/(USD/m2) | 200 | 年工作时间/(d/a) | 300 | ||
| 膜更换费用/(USD/m2) | 90 | 压缩机效率/% | 70 | ||
| 维修率/(%/a) | 5 |
| 项目 | Qi和Henson[ | Ramírez-Santos等[ | Taifan和Maravelias[ | 本研究 |
|---|---|---|---|---|
| 第一级膜面积/m2 | 182.75 | 127.65 | 140.06 | 174.75 |
| 第二级膜面积/m2 | 197.92 | 181.08 | 151.40 | 111.58 |
| 第三级膜面积/m2 | 13.33 | 14.00 | 10.63 | 6.00 |
| 总膜面积/m2 | 394.00 | 322.73 | 302.09 | 292.33 |
| 压缩机功率/kW | 12.61 | 12.87 | 10.66 | 7.31 |
| CH4纯度/% | 88.71 | 89.09 | 88.84 | 88.75 |
| 年总成本/(USD/1000 m3) | 10.971 | 9.095 | 8.501 | 7.876 |
| 求解时间/s | — | — | 1185 | 698 |
表3 案例1优化结果及文献对比
Table 3 Optimization results and literature comparison of Example 1
| 项目 | Qi和Henson[ | Ramírez-Santos等[ | Taifan和Maravelias[ | 本研究 |
|---|---|---|---|---|
| 第一级膜面积/m2 | 182.75 | 127.65 | 140.06 | 174.75 |
| 第二级膜面积/m2 | 197.92 | 181.08 | 151.40 | 111.58 |
| 第三级膜面积/m2 | 13.33 | 14.00 | 10.63 | 6.00 |
| 总膜面积/m2 | 394.00 | 322.73 | 302.09 | 292.33 |
| 压缩机功率/kW | 12.61 | 12.87 | 10.66 | 7.31 |
| CH4纯度/% | 88.71 | 89.09 | 88.84 | 88.75 |
| 年总成本/(USD/1000 m3) | 10.971 | 9.095 | 8.501 | 7.876 |
| 求解时间/s | — | — | 1185 | 698 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 38.24 | 29.53 | 8.71 | 26.65 | 2.88 | 2.24 | 0.64 |
| PRO Ⅱ | 38.24 | 29.46 | 8.78 | 26.59 | 2.87 | 2.24 | 0.63 |
| 误差/% | 0 | 0.24 | -0.80 | 0.23 | 0.35 | 0 | 1.59 |
表4 案例1优化结果与PRO Ⅱ模拟结果对比
Table 4 Comparison of optimization results of Example 1 with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 38.24 | 29.53 | 8.71 | 26.65 | 2.88 | 2.24 | 0.64 |
| PRO Ⅱ | 38.24 | 29.46 | 8.78 | 26.59 | 2.87 | 2.24 | 0.63 |
| 误差/% | 0 | 0.24 | -0.80 | 0.23 | 0.35 | 0 | 1.59 |
| 参数 | 数值 |
|---|---|
| 初始流量/(mol/s) | 1240.0 |
| 初始进料流股压力/bar | 1.00 |
| 温度/K | 308.15 |
| N2纯度/% | 1 |
| CO2回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 23.2, CO: 22.6,N2: 50.3, H2: 3.9 |
| 渗透率/(mol/(m2·bar·s)) | 1000/20/15/85 |
表5 案例2相关参数
Table 5 Related parameters of Example 2
| 参数 | 数值 |
|---|---|
| 初始流量/(mol/s) | 1240.0 |
| 初始进料流股压力/bar | 1.00 |
| 温度/K | 308.15 |
| N2纯度/% | 1 |
| CO2回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 23.2, CO: 22.6,N2: 50.3, H2: 3.9 |
| 渗透率/(mol/(m2·bar·s)) | 1000/20/15/85 |
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 固定成本的年化因子/% | 8.54 | 压缩机材料因子 | 1.4 | ||
| 压缩机成本/EUR | 106 | 间接成本因素 | 1.8 | ||
| 真空泵成本因子/(EUR/kW) | 1500 | 膜每年使用时间/(h/year) | 8322 | ||
| 电力成本/(EUR/(kW·h)) | 0.044 | 更新因子 | 1.42 | ||
| 膜成本/(EUR/m2) | 40 | 绝热比 | 1.36 | ||
| 基础框架成本/EUR | 286×103 | 压缩机等熵效率/% | 85 | ||
| 膜更换费用/(EUR/m2) | 25 | 真空泵等熵效率/% | 85 | ||
| CO2摩尔质量/(g/mol) | 44.01 | 膜年更换率/% | 20 | ||
| 压缩机模块因子 | 2.72 | 机械效率/% | 95 |
表6 案例2目标函数相关参数
Table 6 Objective function-related parameters of Example 2
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 固定成本的年化因子/% | 8.54 | 压缩机材料因子 | 1.4 | ||
| 压缩机成本/EUR | 106 | 间接成本因素 | 1.8 | ||
| 真空泵成本因子/(EUR/kW) | 1500 | 膜每年使用时间/(h/year) | 8322 | ||
| 电力成本/(EUR/(kW·h)) | 0.044 | 更新因子 | 1.42 | ||
| 膜成本/(EUR/m2) | 40 | 绝热比 | 1.36 | ||
| 基础框架成本/EUR | 286×103 | 压缩机等熵效率/% | 85 | ||
| 膜更换费用/(EUR/m2) | 25 | 真空泵等熵效率/% | 85 | ||
| CO2摩尔质量/(g/mol) | 44.01 | 膜年更换率/% | 20 | ||
| 压缩机模块因子 | 2.72 | 机械效率/% | 95 |
| 项目 | Ramírez-Santos等[ | 恒压 | 变压 |
|---|---|---|---|
| 第一级膜面积/ m2 | 105192 | 92072 | 106672 |
| 第二级膜面积/ m2 | 3058 | 7333 | 7476 |
| 第三级膜面积/ m2 | 7229 | 3774 | 4490 |
| 总膜面积/ m2 | 115479 | 103179 | 118638 |
| 进料压力/bar | 2.29 | 2.29 | 2.14 |
| 第一级渗透压力/bar | 0.20 | 0.20 | 0.20 |
| 第二级渗透压力/bar | 0.71 | 0.71 | 0.70 |
| 第三级渗透压力/bar | 0.43 | 0.43 | 0.41 |
| 总功率/MW | — | 7.67 | 7.53 |
| 年总成本/(EUR/t) | 28.9 | 27.0 | 26.9 |
| 求解时间/s | — | 16129 | 30172 |
表7 案例2优化结果及文献对比
Table 7 Otimization results and literature comparison of Example 2
| 项目 | Ramírez-Santos等[ | 恒压 | 变压 |
|---|---|---|---|
| 第一级膜面积/ m2 | 105192 | 92072 | 106672 |
| 第二级膜面积/ m2 | 3058 | 7333 | 7476 |
| 第三级膜面积/ m2 | 7229 | 3774 | 4490 |
| 总膜面积/ m2 | 115479 | 103179 | 118638 |
| 进料压力/bar | 2.29 | 2.29 | 2.14 |
| 第一级渗透压力/bar | 0.20 | 0.20 | 0.20 |
| 第二级渗透压力/bar | 0.71 | 0.71 | 0.70 |
| 第三级渗透压力/bar | 0.43 | 0.43 | 0.41 |
| 总功率/MW | — | 7.67 | 7.53 |
| 年总成本/(EUR/t) | 28.9 | 27.0 | 26.9 |
| 求解时间/s | — | 16129 | 30172 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1398 | 971 | 427 | 235 | 192 | 158 | 77.1 |
| PRO Ⅱ | 1404 | 975 | 429 | 240 | 189 | 164 | 75.6 |
| 误差/% | -0.4 | -0.4 | -0.5 | -2.1 | 1.6 | -3.7 | 2.0 |
表8 案例2在恒压下优化结果与PRO Ⅱ模拟结果对比
Table 8 Comparison of optimization results of Example 2 under constant pressure with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1398 | 971 | 427 | 235 | 192 | 158 | 77.1 |
| PRO Ⅱ | 1404 | 975 | 429 | 240 | 189 | 164 | 75.6 |
| 误差/% | -0.4 | -0.4 | -0.5 | -2.1 | 1.6 | -3.7 | 2.0 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1417 | 971 | 446 | 269 | 177 | 177 | 92.1 |
| PRO Ⅱ | 1424 | 975 | 449 | 275 | 174 | 184 | 90.8 |
| 误差/% | -0.5 | -0.4 | -0.7 | -2.2 | 1.7 | -3.8 | 1.4 |
表9 案例2在变压下优化结果与PRO Ⅱ模拟结果对比
Table 9 Comparison of optimization results of Example 2 under variable pressure with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1417 | 971 | 446 | 269 | 177 | 177 | 92.1 |
| PRO Ⅱ | 1424 | 975 | 449 | 275 | 174 | 184 | 90.8 |
| 误差/% | -0.5 | -0.4 | -0.7 | -2.2 | 1.7 | -3.8 | 1.4 |
| [1] | Godin J, Liu W Z, Ren S, et al. Advances in recovery and utilization of carbon dioxide: a brief review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105644. |
| [2] | Yu Y F, Yang X, Chen J, et al. Spontaneous and rapid self-healing ionogels membrane based on dual dynamic crosslinking networks strategy for high-efficiency CO2 separation[J]. Separation and Purification Technology, 2025, 362: 131916. |
| [3] | NOAA Global Monitoring Laboratory. Trends in CO2 - NOAA Global Monitoring Laboratory [EB/OL]. (2024-07-15) [2025-03-14]. . |
| [4] | IEA. CO2 emissions in 2023[R/OL]. IEA: Paris, 2024. . |
| [5] | Li G Q, Kujawa J, Knozowska K, et al. The advancements in mixed matrix membranes containing functionalized MOFs and 2D materials for CO2/N2 separation and CO2/CH4 separation[J]. Carbon Capture Science & Technology, 2024, 13: 100267. |
| [6] | Faruque Hasan M M, Zantye M S, Kazi M K. Challenges and opportunities in carbon capture, utilization and storage: a process systems engineering perspective[J]. Computers & Chemical Engineering, 2022, 166: 107925. |
| [7] | Yousef A M, El-Maghlany W M, Eldrainy Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351. |
| [8] | Ji L, Zhang L, Zheng X, et al. Simultaneous CO2 absorption, mineralisation and carbonate crystallisation promoted by amines in a single process[J]. Journal of CO2 Utilization, 2021, 51: 101653. |
| [9] | Abd A A, Othman M R, Naji S Z, et al. Methane enrichment in biogas mixture using pressure swing adsorption: process fundamental and design parameters[J]. Materials Today Sustainability, 2021, 11: 100063. |
| [10] | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| [11] | Li G Q, Kujawski W, Válek R, et al. A review - the development of hollow fibre membranes for gas separation processes[J]. International Journal of Greenhouse Gas Control, 2021, 104: 103195. |
| [12] | Hong T, Li Y, Wang S J, et al. Polyurethane-based gas separation membranes: a review and perspectives[J]. Separation and Purification Technology, 2022, 301: 122067. |
| [13] | Pasichnyk M, Stanovsky P, Polezhaev P, et al. Membrane technology for challenging separations: removal of CO2, SO2 and NO x from flue and waste gases[J]. Separation and Purification Technology, 2023, 323: 124436. |
| [14] | Verma H, Jassby D, Maravelias C T. Superstructure-based optimization of membrane network systems for multicomponent liquid mixture separation[J]. Journal of Membrane Science, 2025, 717: 123574. |
| [15] | Samei M, Raisi A. Multi-stage gas separation process for separation of carbon dioxide from methane: modeling, simulation, and economic analysis[J]. Chemical Engineering and Processing - Process Intensification, 2022, 170: 108676. |
| [16] | Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO2 capture from cement industry[J]. Energy Procedia, 2014, 63: 6476-6483. |
| [17] | Qi R H, Henson M A. Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming[J]. Computers & Chemical Engineering, 2000, 24(12): 2719-2737. |
| [18] | Arias A M, Mussati M C, Mores P L, et al. Optimization of multi-stage membrane systems for CO2 capture from flue gas[J]. International Journal of Greenhouse Gas Control, 2016, 53: 371-390. |
| [19] | Chavez Velasco J A, Tumbalam Gooty R, Tawarmalani M, et al. Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP[J]. Journal of Membrane Science, 2021, 636: 119514. |
| [20] | Ohs B, Lohaus J, Wessling M. Optimization of membrane based nitrogen removal from natural gas[J]. Journal of Membrane Science, 2016, 498: 291-301. |
| [21] | Gilassi S, Taghavi S M, Rodrigue D, et al. Optimizing membrane module for biogas separation[J]. International Journal of Greenhouse Gas Control, 2019, 83: 195-207. |
| [22] | Ramírez-Santos Á A, Bozorg M, Addis B, et al. Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas[J]. Journal of Membrane Science, 2018, 566: 346-366. |
| [23] | Chiwaye N, Majozi T, Daramola M O. On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants[J]. Journal of Membrane Science, 2021, 638: 119691. |
| [24] | Taifan G S P, Maravelias C T. Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation[J]. Chemical Engineering Science, 2022, 252: 117482. |
| [25] | Taifan G S P, Maravelias C T. Integrated membrane material design and system synthesis[J]. Chemical Engineering Science, 2023, 269: 118406. |
| [26] | Chen Z W, Tawarmalani M, Agrawal R. Global minimization of power consumptions for multicomponent gas membrane cascades[J]. Computers & Chemical Engineering, 2024, 180: 108464. |
| [27] | Bocciardo D, Ferrari M C, Brandani S. Modelling and multi-stage design of membrane processes applied to carbon capture in coal-fired power plants[J]. Energy Procedia, 2013, 37: 932-940. |
| [28] | Uppaluri R V S, Smith R, Linke P, et al. On the simultaneous optimization of pressure and layout for gas permeation membrane systems[J]. Journal of Membrane Science, 2006, 280(1/2): 832-848. |
| [29] | Liao Z W, Hu Y X, Wang J D, et al. Systematic design and optimization of a membrane-cryogenic hybrid system for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17186-17197. |
| [30] | Chang C L, Liao Z W, Costa A L H, et al. Globally optimal synthesis of heat exchanger networks. Part Ⅱ: non-minimal networks[J]. AIChE Journal, 2020, 66(7): e16264. |
| [31] | Merkel T C, Lin H Q, Wei X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
| [32] | Yuan M Y, Narakornpijit K, Haghpanah R, et al. Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization[J]. Journal of Membrane Science, 2014, 465: 177-184. |
| [33] | Zhai H B, Rubin E S. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants[J]. Environmental Science & Technology, 2013, 47(6): 3006-3014. |
| [34] | Zito P F, Brunetti A, Barbieri G. Multi-step membrane process for biogas upgrading[J]. Journal of Membrane Science, 2022, 652: 120454. |
| [1] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [4] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [5] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [6] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [7] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [8] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [9] | 李文龙, 常程, 吴小林, 姬忠礼. 油水聚结过滤材料中的液体分布特性及过程压降演化研究[J]. 化工学报, 2025, 76(9): 4850-4861. |
| [10] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [11] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [12] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [13] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [14] | 王钰, 冯英楠, 王涛, 赵之平. 原位生长构筑纳米复合纳滤膜:膜制备与应用[J]. 化工学报, 2025, 76(9): 4723-4736. |
| [15] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号