化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4658-4669.DOI: 10.11949/0438-1157.20250113
张彬怡1(
), 孙少东2, 姚谦3, 蔡文河3, 张惠宇1, 李成新1(
)
收稿日期:2025-02-05
修回日期:2025-04-06
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
李成新
作者简介:张彬怡(1999—),女,硕士研究生,zhangbinyi2022@163.com
Binyi ZHANG1(
), Shaodong SUN2, Qian YAO3, Wenhe CAI3, Huiyu ZHANG1, Chengxin LI1(
)
Received:2025-02-05
Revised:2025-04-06
Online:2025-09-25
Published:2025-10-23
Contact:
Chengxin LI
摘要:
针对某大型煤化工厂产生的约15000 m3/h(标准工况)非渗透气作为废气燃料直接火炬燃烧导致的能源浪费问题,提出在原有煤制甲醇系统中引入固体氧化物燃料电池(SOFC)热电系统,开展煤化工与SOFC和透平发电技术耦合技术研究。使用仿真软件Aspen Plus建立煤制甲醇耦合SOFC系统的工艺流程,模拟SOFC进气温度、电流密度、气体利用率以及制甲醇流程弛放气循环比例对系统功率、效率的影响,并计算该耦合方案的经济成本。结果表明,与原煤制甲醇系统相比,非渗透气回收100%,其中85%用于燃料电池发电,系统额外产生13000 kW的电力,综合能量利用率提升2%,该系统在能源有效利用和缓解化工厂用电压力方面具有优越性,为现代煤化工产业绿色转型与SOFC商业化发展提供了思路。
中图分类号:
张彬怡, 孙少东, 姚谦, 蔡文河, 张惠宇, 李成新. 煤制甲醇耦合固体氧化物燃料电池混合系统研究[J]. 化工学报, 2025, 76(9): 4658-4669.
Binyi ZHANG, Shaodong SUN, Qian YAO, Wenhe CAI, Huiyu ZHANG, Chengxin LI. Study on hybrid system of coal-to-methanol coupled solid oxide fuel cell[J]. CIESC Journal, 2025, 76(9): 4658-4669.
| 工业分析/% | 元素分析/% | 热值/(MJ/kg) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Car | Har | Nar | Oar | Sar | |
| 10.7 | 27.41 | 27.1 | 32.85 | 76.62 | 4.74 | 1.11 | 19.68 | 1.83 | 17.3 |
表1 煤样工业分析和元素分析
Table 1 Industrial and elemental analysis of coal
| 工业分析/% | 元素分析/% | 热值/(MJ/kg) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mad | Aad | Vad | FCad | Car | Har | Nar | Oar | Sar | |
| 10.7 | 27.41 | 27.1 | 32.85 | 76.62 | 4.74 | 1.11 | 19.68 | 1.83 | 17.3 |
| 参数 | 数值 |
|---|---|
| SOFC工作压强/105 Pa | 1.0132 |
| SOFC输出功率/kW | 10000 |
| SOFC工作温度/℃ | 800 |
| 阳极入口温度/℃ | 700 |
| 阴极入口温度/℃ | 630 |
| 阳极燃料流量/(kmol/h) | 665 |
| 阴极空气流量/(kmol/h) | 6400 |
| 阳极燃料气组成 | H2 48%、CO2 8%、CO 7%、N2 33%、氩气4% |
| 电流密度/(A/m2) | 4000 |
| 燃料利用率 | 0.85 |
| 阴极空气利用率 | 0.15 |
| 单电池输出电压/V | 0.63 |
| 电池有效面积/m2 | 5504.32 |
| 电池净发电效率 | 0.42 |
| 燃烧器效率 | 1 |
| 透平机械效率 | 0.99 |
| 换热器出口温差/K | 10 |
表2 SOFC工作参数
Table 2 SOFC working parameters
| 参数 | 数值 |
|---|---|
| SOFC工作压强/105 Pa | 1.0132 |
| SOFC输出功率/kW | 10000 |
| SOFC工作温度/℃ | 800 |
| 阳极入口温度/℃ | 700 |
| 阴极入口温度/℃ | 630 |
| 阳极燃料流量/(kmol/h) | 665 |
| 阴极空气流量/(kmol/h) | 6400 |
| 阳极燃料气组成 | H2 48%、CO2 8%、CO 7%、N2 33%、氩气4% |
| 电流密度/(A/m2) | 4000 |
| 燃料利用率 | 0.85 |
| 阴极空气利用率 | 0.15 |
| 单电池输出电压/V | 0.63 |
| 电池有效面积/m2 | 5504.32 |
| 电池净发电效率 | 0.42 |
| 燃烧器效率 | 1 |
| 透平机械效率 | 0.99 |
| 换热器出口温差/K | 10 |
| 参数 | 数值 |
|---|---|
| 煤炭流量/(t/h) | 350 |
| 压缩机机械效率 | 0.99 |
| 气化炉水煤比/% | 0.13 |
| 气化炉氧煤比/% | 0.75 |
| 气化炉反应温度/℃ | 1570 |
| 弛放气循环比例 | 0.9 |
| 变压吸附器提纯效率 | 0.75 |
| 甲醇产量/(t/h) | 217 |
| 综合能量利用率 | 0.785 |
表3 煤制甲醇系统工作参数
Table 3 Working parameters of coal-to-methanol system
| 参数 | 数值 |
|---|---|
| 煤炭流量/(t/h) | 350 |
| 压缩机机械效率 | 0.99 |
| 气化炉水煤比/% | 0.13 |
| 气化炉氧煤比/% | 0.75 |
| 气化炉反应温度/℃ | 1570 |
| 弛放气循环比例 | 0.9 |
| 变压吸附器提纯效率 | 0.75 |
| 甲醇产量/(t/h) | 217 |
| 综合能量利用率 | 0.785 |
| 单元 | 反应过程 |
|---|---|
| 煤气化 | |
| 一氧化碳变换 | |
| 甲醇合成 | |
| SOFC | |
表4 系统中包含的反应过程
Table 4 Reaction processes included in the system
| 单元 | 反应过程 |
|---|---|
| 煤气化 | |
| 一氧化碳变换 | |
| 甲醇合成 | |
| SOFC | |
| 参数 | 数值 | |
|---|---|---|
| 阳极厚度/μm | 20 | |
| 支撑体厚度/μm | 300 | |
| 阴极厚度/μm | 25 | |
| 电解质厚度/μm | 15 | |
| 连接体厚度/mm | 1 | |
| 阳极指前因子/(A/cm2) | 700000 | |
| 阴极指前因子/(A/cm2) | 700000 | |
| 阳极活化能/(J/mol) | 155000 | |
| 阴极活化能/(J/mol) | 110000 | |
| 欧姆极化系数α/(Ω·mm) | 阳极 | 0.0289 |
| 阴极 | 0.0811 | |
| 电解质 | 0.0294 | |
| 内连接器 | 1.2 | |
| 欧姆极化系数b/K | 阳极 | -1392 |
| 阴极 | 600 | |
| 电解质 | 10350 | |
| 内连接器 | 4690 | |
| 孔隙率ε | 0.3 | |
| 曲率τ | 5 | |
| 燃料利用率Uf | 0.85 | |
表5 SOFC数学模型计算所需参数[20-21]
Table 5 Parameters required for SOFC mathematical model calculation[20-21]
| 参数 | 数值 | |
|---|---|---|
| 阳极厚度/μm | 20 | |
| 支撑体厚度/μm | 300 | |
| 阴极厚度/μm | 25 | |
| 电解质厚度/μm | 15 | |
| 连接体厚度/mm | 1 | |
| 阳极指前因子/(A/cm2) | 700000 | |
| 阴极指前因子/(A/cm2) | 700000 | |
| 阳极活化能/(J/mol) | 155000 | |
| 阴极活化能/(J/mol) | 110000 | |
| 欧姆极化系数α/(Ω·mm) | 阳极 | 0.0289 |
| 阴极 | 0.0811 | |
| 电解质 | 0.0294 | |
| 内连接器 | 1.2 | |
| 欧姆极化系数b/K | 阳极 | -1392 |
| 阴极 | 600 | |
| 电解质 | 10350 | |
| 内连接器 | 4690 | |
| 孔隙率ε | 0.3 | |
| 曲率τ | 5 | |
| 燃料利用率Uf | 0.85 | |
| 参数 | 数值 |
|---|---|
| 年工作日/d | 330 |
| 年工作时间/h | 8000 |
| 平均年利率/% | 12 |
| 运行年限 | 20 |
| 维护成本因子 | 1.06 |
| 总能源输出/kW | 13000 |
| 透平等熵效率 | 0.99 |
| SOFC面积/m2 | 5504.32 |
| SOFC工作温度/K | 1073 |
| 透平入口气体流量/(kg/s) | 3 |
| 透平进气压力/MPa | 4 |
| 透平出口压力/MPa | 0.1 |
| 透平出口温度/K | 615 |
| 进入后燃室空气流量/(kg/s) | 450 |
| 后燃室进气压力/MPa | 0.1 |
| 后燃室出口压力/MPa | 0.1 |
| 后燃室出口温度/K | 1120 |
表6 成本分析的关键参数
Table 6 Key parameters of cost analysis
| 参数 | 数值 |
|---|---|
| 年工作日/d | 330 |
| 年工作时间/h | 8000 |
| 平均年利率/% | 12 |
| 运行年限 | 20 |
| 维护成本因子 | 1.06 |
| 总能源输出/kW | 13000 |
| 透平等熵效率 | 0.99 |
| SOFC面积/m2 | 5504.32 |
| SOFC工作温度/K | 1073 |
| 透平入口气体流量/(kg/s) | 3 |
| 透平进气压力/MPa | 4 |
| 透平出口压力/MPa | 0.1 |
| 透平出口温度/K | 615 |
| 进入后燃室空气流量/(kg/s) | 450 |
| 后燃室进气压力/MPa | 0.1 |
| 后燃室出口压力/MPa | 0.1 |
| 后燃室出口温度/K | 1120 |
| [1] | 李智, 刘涛, 张志伟, 等. 煤化工低碳技术及其与新能源耦合发展的研究进展[J]. 中国煤炭, 2022(8): 66-81. |
| Li Z, Liu T, Zhang Z W, et al. Research progress on low-carbon technology of coal chemical industry and its coupling development with new energy[J]. China Coal, 2022(8): 66-81. | |
| [2] | 赵阳, 张宁, 刘金存, 等. 煤化工与新能源耦合绿色低碳发展路径研究[J]. 煤炭经济研究, 2024, 44(12): 106-113. |
| Zhao Y, Zhang N, Liu J C, et al. Research on the green and low-carbon development path for integrating thecoal chemical industry with new energy[J]. Coal Economic Research, 2024, 44(12): 106-113. | |
| [3] | 谢克昌. 新型能源体系发展背景下煤炭清洁高效转化的挑战及途径[J]. 煤炭学报, 2024, 49(1): 47-56. |
| Xie K C. Develop new energy system and promote clean and efficient conversion of coal[J]. Journal of China Coal Society, 2024, 49(1): 47-56. | |
| [4] | 赵威逊. “双碳”目标下能源转型赋能新质生产力现实逻辑、作用机制与推进路径[J]. 中国矿业大学学报(社会科学版), 2025, 27(2): 140-153. |
| Zhao W X. The realistic logic, mechanisms and promotion pathways of energy transition empowering new quality productive forces under the “dual carbon” goal[J]. Journal of China University of Mining & Technology (Social Sciences), 2025, 27(2): 140-153. | |
| [5] | 孙明斌. 煤制甲醇合成膨胀气的综合回收利用[J]. 当代化工研究, 2023(9): 112-114. |
| Sun M B. Comprehensive recovery and utilization of expanded gas from coal-to-methanol synthesis[J]. Modern Chemical Research, 2023(9): 112-114. | |
| [6] | 胡亮, 杨志宾, 熊星宇, 等. 我国固体氧化物燃料电池产业发展战略研究[J]. 中国工程科学, 2022, 24(3): 118-126. |
| Hu L, Yang Z B, Xiong X Y, et al. Development strategy for solid oxide fuel cell industry in China[J]. Strategic Study of CAE, 2022, 24(3): 118-126. | |
| [7] | Ali Abdelkareem M, Elsaid K, Wilberforce T, et al. Environmental aspects of fuel cells: a review[J]. Science of the Total Environment, 2021, 752: 141803. |
| [8] | Cigolotti V, Genovese M, Fragiacomo P. Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems[J]. Energies, 2021, 14(16): 4963. |
| [9] | Chen R Y, Gao Y, Gao J T, et al. From concept to commercialization: a review of tubular solid oxide fuel cell technology[J]. Journal of Energy Chemistry, 2024, 97: 79-109. |
| [10] | 高圆, 李智, 李甲鸿, 等. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24. |
| Gao Y, Li Z, Li J H, et al. Progress in technologies of metal-supported solid oxide fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 1-24. | |
| [11] | Chiang H D, Hsu C N, Huang W B, et al. Design and performance study of a solid oxide fuel cell and gas turbine hybrid system applied in combined cooling, heating, and power system[J]. Journal of Energy Engineering, 2012, 138(4): 205-214. |
| [12] | Zhang W, Croiset E, Douglas P L, et al. Simulation of a tubular solid oxide fuel cell stack using Aspen PlusTM unit operation models[J]. Energy Conversion and Management, 2005, 46(2): 181-196. |
| [13] | Daneshpour R, Mehrpooya M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176: 274-286. |
| [14] | Mehrpooya M, Ghorbani B, Jafari B, et al. Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method[J]. Thermal Science and Engineering Progress, 2018, 7: 8-19. |
| [15] | US Department of Energy. Fuel Cell Handbook[M]. 5th ed. Morgantown, WV: Federal Energy Technology Center, 2000: 37. |
| [16] | 罗丽琦, 谢广元, 王绍荣. 以气化煤气为燃料的固体氧化物燃料电池热电联供系统设计[J]. 洁净煤技术, 2023, 29(5): 68-79. |
| Luo L Q, Xie G Y, Wang S R. Design of combined heat and power supply system based on coal gas SOFC(IGFC-CHP) system[J]. Clean Coal Technology, 2023, 29(5): 68-79. | |
| [17] | Zhao Y M, Xue H Q, Jiang L Y, et al. Proposal and assessment of a solid oxide fuel cell cogeneration system in order to produce high-temperature steam aiming at industrial applications[J]. Applied Thermal Engineering, 2023, 221: 119882. |
| [18] | Yang X Y, Zhao H B. Thermodynamic performance study of the SOFC-STIG distributed energy system fueled by LNG with CO2 recovery[J]. Energy, 2019, 186: 115860. |
| [19] | Zeng R, Guo B X, Zhang X F, et al. Study on thermodynamic performance of SOFC-CCHP system integrating ORC and double-effect ARC[J]. Energy Conversion and Management, 2021, 242: 114326. |
| [20] | Yang S, Jin Z P, Ji F, et al. Proposal and analysis of a combined cooling, heating, and power system with humidity control based on solid oxide fuel cell[J]. Energy, 2023, 284: 129233. |
| [21] | Zhou J Y, Wang Z, Han M F, et al. Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2022, 47(6): 4109-4119. |
| [22] | Saebea D, Authayanun S, Patcharavorachot Y, et al. Effect of anode-cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system[J]. Energy, 2016, 94: 218-232. |
| [23] | 孙少东, 李智, 袁本峰, 等. 整体煤气化燃料电池发电与甲醇联产系统运行特性[J]. 洁净煤技术, 2023, 29(3): 49-55. |
| Sun S D, Li Z, Yuan B F, et al. Design and operation characteristics study of integrated coal gasification fuel cell power generation and methanol cogeneration system[J]. Clean Coal Technology, 2023, 29(3): 49-55. | |
| [24] | 马宁, 赵攀, 刘艾杰, 等. 纯氢补燃型和天然气补燃型压缩空气储能系统特性与(㶲)经济性对比[J]. 发电技术, DOI: 10.12096/j.2096-4528.pgt.24136 . |
| Ma N, Zhao P, Liu A J, et al. Comparison of characteristics and exergy economy of compressed air energy storage systems with pure hydrogen afterburning and natural gas afterburning[J]. Power Generation Technology, DOI: 10.12096/j.2096-4528.pgt.24136 . | |
| [25] | Bahari M, Entezari A, Esmaeilion F, et al. Systematic analysis and multi-objective optimization of an integrated power and freshwater production cycle[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18831-18856. |
| [26] | Kumar P, Singh O. Exergo-economic study of SOFC-intercooled and reheat type GT-VARS-ORC combined power and cooling system[J]. Journal of the Institution of Engineers (India): Series C, 2021, 102(5): 1153-1166. |
| [27] | Qu J B, Feng Y M, Zhu Y Q, et al. Ammonia-fed solid oxide fuel cell-polygen system: techno-economic analysis and optimization[J]. Renewable and Sustainable Energy Reviews, 2025, 211: 115314. |
| [28] | Ni T M, Si J W, Gong X H, et al. Thermodynamic and economic analysis of a novel cascade waste heat recovery system for solid oxide fuel cell[J]. Energy Conversion and Management, 2022, 259: 115562. |
| [29] | Cao Y, Alsharif S, El-Awady A, et al. A conceptual process design towards CO2 emission reduction by integration of solar-based hydrogen production and injection into biomass-derived solid oxide fuel cell[J]. Process Safety and Environmental Protection, 2022, 164: 164-176. |
| [30] | Deng M L, Liu J Y, Zhang X S, et al. Energy and parameter analysis of SOFC system for hydrogen production from methane steam reforming[J]. Journal of Thermal Science, 2022, 31(6): 2088-2110. |
| [1] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
| [3] | 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
| [4] | 刘叶刚, 张忠林, 侯起旺, 杨景轩, 陈东良, 郝晓刚. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846. |
| [5] | 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
| [6] | 谢静, 徐明益, 班帅, 孙晖, 周红军. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226. |
| [7] | 游怀亮, 韩吉田, 刘洋. 基于SOFC/MGT/ORC的微型冷热电联供系统性能分析[J]. 化工学报, 2018, 69(S2): 300-308. |
| [8] | 李裕, 叶爽, 王蔚国. 基于天然气自热重整的SOFC系统性能分析[J]. 化工学报, 2016, 67(4): 1557-1564. |
| [9] | 刘欣,郝晓弘,杨新华,安爱民. 内部重整固体氧化物燃料电池发电系统的非线性预测控制[J]. 化工进展, 2014, 33(04): 900-906. |
| [10] | 熊洁, 焦成冉, 韩敏芳. 不同燃料SOFC的理论电池电动势及其性能[J]. 化工学报, 2013, 64(7): 2664-2671. |
| [11] | 刘 欣,郝晓弘,杨新华,安爱民. 固体氧化物燃料电池温度系统的改进型广义预测控制方法[J]. 化工进展, 2013, 32(10): 2372-2376. |
| [12] | 孙旺, 毛雅春, 张乃庆, 孙克宁. 阳极支撑微管式固体氧化物燃料电池的研究进展[J]. 化工学报, 2013, 64(1): 223-232. |
| [13] | 严 涵1,朱秀芳1,徐丹丹1,谭文轶2,钟 秦1. 固体氧化物燃料电池阳极材料Ni-SDC的稳定性实验及热力学分析[J]. 化工进展, 2012, 31(03): 607-611. |
| [14] | 孟秀霞, 杨乃涛, 尹屹梅, 谭小耀, 马紫峰. 微管式固体氧化物燃料电池制备技术及电堆组装工艺[J]. CIESC Journal, 2011, 62(11): 2977-2986. |
| [15] | 杨国刚, 吕欣荣, 岳丹婷, 袁金良. SOFC内部重整反应与电化学反应耦合机理 [J]. 化工学报, 2008, 59(4): 1008-1015. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号