化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4683-4693.DOI: 10.11949/0438-1157.20250198
王一飞1(
), 李玉星1(
), 欧阳欣2, 赵雪峰3, 孟岚3, 胡其会1, 殷布泽1, 郭雅琦1
收稿日期:2025-02-28
修回日期:2025-04-09
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
李玉星
作者简介:王一飞(2000—),男,硕士研究生,s23060043@upc.edu.cn
基金资助:
Yifei WANG1(
), Yuxing LI1(
), Xin OUYANG2, Xuefeng ZHAO3, Lan MENG3, Qihui HU1, Buze YIN1, Yaqi GUO1
Received:2025-02-28
Revised:2025-04-09
Online:2025-09-25
Published:2025-10-23
Contact:
Yuxing LI
摘要:
CO2管道出现断裂扩展时,必须考虑管内介质减压行为对该过程的影响。由于流固耦合方法存在计算成本高、收敛困难等问题,本文提出分区施加载荷的解耦计算方法,该方法可以大大简化管道边界条件计算的复杂性,并缩短运算时间。借助激波管模型、减压波模型以及管道襟翼减压经验公式作为CO2减压模型,分别对裂尖及其前后施加不同减压形式的压力载荷,以此来模拟断裂发生过程中CO2的减压行为。同时,所建立的有限元模型考虑了回填土及管道自重对断裂过程的影响,采用结构化网格过渡技术进行网格划分,在保证计算精度的前提下大大提高了计算效率。经对比,试验测得的平均断裂速度为108.21 m/s,相应的模型计算值为114.18 m/s,相对误差为5.52%,模型更好地预测了启裂速度,并且得到的峰值速度也与试验值更为接近。本模型计算结果在考虑保守性的同时体现出了更高的精度。
中图分类号:
王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693.
Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics[J]. CIESC Journal, 2025, 76(9): 4683-4693.
| 名称 | 距泄漏口距离/m |
|---|---|
| PG1 | 0.10 |
| PG2 | 0.25 |
| PG3 | 3.00 |
| PG4 | 19.35 |
表1 高频压力传感器位置分布
Table 1 Distribution of high-frequency pressure sensor locations
| 名称 | 距泄漏口距离/m |
|---|---|
| PG1 | 0.10 |
| PG2 | 0.25 |
| PG3 | 3.00 |
| PG4 | 19.35 |
| 初始压力/MPa | 初始温度/℃ | CO2注入量/kg | CO2相态 | 泄漏孔径/mm | 开度/% |
|---|---|---|---|---|---|
| 5.4 | 41 | 75.74 | 气相 | 187 | 100 |
表2 激波管试验初始工况
Table 2 Initial working conditions of excitation tube test
| 初始压力/MPa | 初始温度/℃ | CO2注入量/kg | CO2相态 | 泄漏孔径/mm | 开度/% |
|---|---|---|---|---|---|
| 5.4 | 41 | 75.74 | 气相 | 187 | 100 |
| 位置 | 平台压力试验值/MPa | 平台压力计算值/MPa | 相对误差/% |
|---|---|---|---|
| PG1 | 2.10 | 2.03 | -3.33 |
| PG2 | 2.26 | 2.33 | 3.10 |
| PG3 | 2.77 | 2.85 | 2.89 |
表3 近泄漏口压力平台计算误差分析
Table 3 Calculation error analysis of near leakage port pressure platform
| 位置 | 平台压力试验值/MPa | 平台压力计算值/MPa | 相对误差/% |
|---|---|---|---|
| PG1 | 2.10 | 2.03 | -3.33 |
| PG2 | 2.26 | 2.33 | 3.10 |
| PG3 | 2.77 | 2.85 | 2.89 |
| 初始温度/℃ | 初始压力/MPa | 介质体积分数/% | |||
|---|---|---|---|---|---|
| CO2 | H2 | N2 | CH4 | ||
| 15 | 15.02 | 90.3 | 1.1 | 6.6 | 2.0 |
表4 爆破试验初始条件及介质组分
Table 4 Initial conditions and media components of the burst test
| 初始温度/℃ | 初始压力/MPa | 介质体积分数/% | |||
|---|---|---|---|---|---|
| CO2 | H2 | N2 | CH4 | ||
| 15 | 15.02 | 90.3 | 1.1 | 6.6 | 2.0 |
| 屈服强度 | 抗拉强度 | 夏比冲击功CV/J |
|---|---|---|
| 470 | 577 | 102 |
表5 起始管相关参数
Table 5 Parameters related to the initiation pipe
| 屈服强度 | 抗拉强度 | 夏比冲击功CV/J |
|---|---|---|
| 470 | 577 | 102 |
| 材料 | 密度/(kg/m3) | 弹性剪切模量/MPa | 泊松比 | 摩擦角/(°) | 膨胀角/(°) | 黏聚力/kPa |
|---|---|---|---|---|---|---|
| 回填土 | 1900 | 14.8 | 0.35 | 25 | 0° | 8 |
表6 回填土莫尔-库仑本构方程参数
Table 6 Parameters of Moore-Coulomb eigenstructural equation for backfill soil
| 材料 | 密度/(kg/m3) | 弹性剪切模量/MPa | 泊松比 | 摩擦角/(°) | 膨胀角/(°) | 黏聚力/kPa |
|---|---|---|---|---|---|---|
| 回填土 | 1900 | 14.8 | 0.35 | 25 | 0° | 8 |
| 环向应力/MPa | Mises应力/MPa | 最大主应力/MPa |
|---|---|---|
| 1075 | 1204 | 1204 |
表7 起始管启裂时的裂尖应力
Table 7 The stress at the crack tip when the initiation pipe begins to crack
| 环向应力/MPa | Mises应力/MPa | 最大主应力/MPa |
|---|---|---|
| 1075 | 1204 | 1204 |
| [1] | 余珮, 郝瑞雪, 孙永平. 全球清洁能源合作伙伴关系下的中欧技术合作[J]. 欧洲研究, 2023, 41(4): 30-54. |
| Yu P, Hao R X, Sun Y P. An assessment of China-Europe technology cooperation under the global clean energy partnership[J]. Chinese Journal of European Studies, 2023, 41(4): 30-54. | |
| [2] | 杨永钊, 周进生, 胡海文, 等. CCUS-EOR产业的发展现状、经济效益与未来展望[J]. 中国矿业, 2025, 34(2): 190-203. |
| Yang Y Z, Zhou J S, Hu H W, et al. Development status, economic benefits and future prospects of CCUS-EOR industry[J]. China Mining Magazine, 2025, 34(2): 190-203. | |
| [3] | 霍军良, 唐治国, 邱宗君, 等. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| Huo J L, Tang Z G, Qiu Z J, et al. Experimental study on freezing and blocking risk of CO2 pipeline during venting under throttling[J]. China Industrial Economics, 2025, 76(4): 1898-1908. | |
| [4] | 胡其会, 李玉星, 张建, 等. "双碳"战略下中国CCUS技术现状及发展建议[J]. 油气储运, 2022, 41(4): 361-371. |
| Hu Q H, Li Y X, Zhang J, et al. Current status and development suggestions of CCUS technology in China under the "Double Carbon" strategy[J]. Oil & Gas Storage and Transportation, 2022, 41(4): 361-371. | |
| [5] | 闫振汉, 喻健良, 闫兴清, 等. 密相CO2管道泄漏失压过程热力学特性[J]. 化工学报, 2019, 70(8): 3071-3077. |
| Yan Z H, Yu J L, Yan X Q, et al. Thermodynamic characteristics during decompression process of dense phase CO2 pipeline leakage[J]. CIESC Journal, 2019, 70(8): 3071-3077. | |
| [6] | 孙境泽. CCUS管道超临界/密相CO2泄漏过程分析与研究[J]. 石油石化节能与计量, 2024, 14(12): 70-75. |
| Sun J Z. Analysis and research of supercritical/dense phase CO2 leakage process in CCUS pipeline[J]. Energy Conservation and Measurement in Petroleum & Petrochemical Industry, 2024, 14(12): 70-75. | |
| [7] | 李凯旋, 梁俊逸, 刘斌, 等. 管道输送高压CO2能耗分析及相态选择研究[J]. 油气田地面工程, 2025, 44(2): 1-7. |
| Li K X, Liang J Y, Liu B, et al. Energy consumption analysis and phase selection study of high-pressure CO2 transportation in pipelines[J]. Oil-Gas Field Surface Engineering, 2025, 44(2): 1-7. | |
| [8] | Huang W H, Li Y X, Chen P C. China's CO2 pipeline development strategy under carbon neutrality[J]. Natural Gas Industry B, 2023, 10(5): 502-510. |
| [9] | 郭晓璐, 喻健良, 闫兴清, 等. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442. |
| Guo X L, Yu J L, Yan X Q, et al. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442. | |
| [10] | 李欣泽, 姜星宇, 王德中, 等. 基于等容热力学的超临界CO2管道减压波传播特性研究[J]. 低碳化学与化工, 2024, 49(7): 129-138. |
| Li X Z, Jiang X Y, Wang D Z, et al. Study on propagation characteristics of decompression wave of supercritical CO2 pipeline based on isochoric thermodynamics[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(7): 129-138. | |
| [11] | Liu X, Godbole A, Lu C, et al. Investigation of terrain effects on the consequence distance of CO2 released from high-pressure pipelines[J]. International Journal of Greenhouse Gas Control, 2017, 66: 264-275. |
| [12] | Koornneef J, Spruijt M, Molag M, et al. Quantitative risk assessment of CO2 transport by pipelines: a review of uncertainties and their impacts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 12-27. |
| [13] | 张明, 王海锋, 胡其会, 等. 超临界/密相CO2管道泄漏压力响应及低温规律实验研究[J]. 中国安全生产科学技术, 2024, 20(7): 65-71. |
| Zhang M, Wang H F, Hu Q H, et al. Experimental study on leakage pressure response and low-temperature law of supercritical/dense phase CO2 pipeline[J]. Journal of Safety Science and Technology, 2024, 20(7): 65-71. | |
| [14] | 李胜男, 苗青, 欧阳欣, 等. 密相/超临界CO2管道全尺寸爆破试验综述[J]. 石油管材与仪器, 2023, 9(1): 16-22. |
| Li S N, Miao Q, Ouyang X, et al. Overview of full-scale burst test for dense phase/supercritical carbon dioxide pipeline[J]. Petroleum Tubular Goods & Instruments, 2023, 9(1): 16-22. | |
| [15] | Aursand E, Aursand P, Berstad T, et al. CO2 pipeline integrity: a coupled fluid-structure model using a reference equation of state for CO2 [J]. Energy Procedia, 2013, 37: 3113-3122. |
| [16] | Aursand E, Dørum C, Hammer M, et al. CO2 pipeline integrity: comparison of a coupled fluid-structure model and uncoupled two-curve methods[J]. Energy Procedia, 2014, 51: 382-391. |
| [17] | Aursand E, Dumoulin S, Hammer M, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid-structure model[J]. Engineering Structures, 2016, 123: 192-212. |
| [18] | Nordhagen H O, Munkejord S T, Hammer M, et al. A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration[J]. Engineering Structures, 2017, 143: 245-260. |
| [19] | Keim V, Marx P, Nonn A, et al. Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures[J]. International Journal of Pressure Vessels and Piping, 2019, 175: 103934. |
| [20] | 陈磊, 胡延伟, 闫兴清, 等. CO2管道断裂扩展与管内减压耦合特性数值模拟[J]. 油气储运, 2024, 43(5): 537-544. |
| Chen L, Hu Y W, Yan X Q, et al. Numerical simulation of coupling characteristics of fracture propagation and pressure reduction in CO2 pipeline[J]. Oil and Gas Storage and Transportation, 2024, 43(5): 537-544. | |
| [21] | 甄莹, 曹宇光, 张振永, 等. 管土耦合作用下超临界CO2管道裂纹动态扩展模拟方法[J]. 石油学报, 2024, 45(7): 1130-1140. |
| Zhen Y, Cao Y G, Zhang Z Y, et al. The numerical simulation method for dynamic crack propagation of supercritical CO2 pipeline under the pipe-soil coupling[J]. Acta Petrolei Sinica, 2024, 45(7): 1130-1140. | |
| [22] | 闫锋, 殷布泽, 欧阳欣, 等. CO2管道泄漏过程减压波数值计算模型及初始温压的影响[J]. 油气储运, 2024, 43(5): 570-578. |
| Yan F, Yin B Z, Ouyang X, et al. Numerical calculation model for decompression waves in CO2 pipeline leakage and effect of initial temperature and pressure[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 570-578. | |
| [23] | Wang Y F, Hu Q H, Yin B Z, et al. Research progress on dynamic crack propagation and crack arrest models of supercritical and dense-phase CO2 pipelines[J]. Journal of Pipeline Science and Engineering, 2025: 100255. |
| [24] | Barnett J, Cooper R. An operator's perspective on fracture control in dense phase CO2 pipelines [C]// Proceedings of the 2016 11th International Pipeline Conference. Volume 3: Operations, Monitoring and Maintenance; Materials and Joining. Calgary, 2016. |
| [25] | Cosham A, Jones D G, Armstrong K, et al. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]// 2016 11th International Pipeline Conference. Calgary, 2016. |
| [26] | Chen L, Hu Y W, Yang K, et al. Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline[J]. Energy, 2023, 283: 129060. |
| [27] | Zhu X K. State-of-the-art review of fracture control technology for modern and vintage gas transmission pipelines[J]. Engineering Fracture Mechanics, 2015, 148: 260-280. |
| [28] | 顾帅威. 不同相态CO2管道减压过程流动与温降特性研究[D]. 青岛: 中国石油大学(华东), 2019. |
| Gu S W. Flow and temperature drop characterization of CO2 pipeline depressurization process with different phases[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| [29] | Gu S W, Li Y X, Teng L, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J]. Process Safety and Environmental Protection, 2018, 120: 237-247. |
| [30] | Uddin M, Wilkowski G. Simulation of dynamic crack propagation and arrest using various types of crack arrestor[C]//2016 11th International Pipeline Conference. Calgary, 2016. |
| [31] | Gruben G, Dumoulin S, Nordhagen H, et al. Simulation of a full-scale CO2 fracture propagation test[C]//2018 12th International Pipeline Conference. Calgary, 2018. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [6] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [7] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [8] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [9] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [10] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [11] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [12] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [13] | 张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871. |
| [14] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [15] | 杨开源, 陈锡忠. 颗粒破碎的离散元及有限离散元模拟方法比较[J]. 化工学报, 2025, 76(9): 4398-4411. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号