化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4474-4486.DOI: 10.11949/0438-1157.20250255
收稿日期:2025-03-17
修回日期:2025-05-06
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
黄文来
作者简介:王三一(1999—),男,硕士研究生,electronp@163.com
基金资助:
Sanyi WANG1,2(
), Wenlai HUANG1,2(
)
Received:2025-03-17
Revised:2025-05-06
Online:2025-09-25
Published:2025-10-23
Contact:
Wenlai HUANG
摘要:
电化学合成氨工艺由于条件温和等优势具有取代传统Haber-Bosch法的潜力,对其全流程进行定量评估具有重要价值。基于锂介导的氮还原反应(Li-NRR)和吸收法分离合成氨,构建了整套电化学合成氨流程,并对其20年的运营周期进行了模拟与优化。结果表明,电化学法的初期投资成本远低于Haber-Bosch法,但总成本仍高于Haber-Bosch法,其中电化学反应的电费占总成本的80%以上。为提升电化学合成氨的实际应用价值,应着眼于提高电化学反应的转化率及氨选择性,降低反应的电压,以降低运维成本;同时,应降低电化学反应器中的贵金属用量,或寻找可替代的新型催化剂,以进一步降低电化学反应器的初期投资成本。
中图分类号:
王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486.
Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis[J]. CIESC Journal, 2025, 76(9): 4474-4486.
| 参数 | 数值 |
|---|---|
| rc,ref /(nmolNH₃·s-1·cm-2) | 150 |
| pN₂,ref /bar | 15 |
| cEtOH,ref /(mol·L-1) | 0.1 |
| Ec,ref (相对于标准锂电极)/V | -0.55 |
| ηF,ref /% | 60 |
| α | 0.5 |
表1 参考状态下Li-NRR反应参数值[10-11]
Table 1 Li-NRR parameter values in the reference state[10-11]
| 参数 | 数值 |
|---|---|
| rc,ref /(nmolNH₃·s-1·cm-2) | 150 |
| pN₂,ref /bar | 15 |
| cEtOH,ref /(mol·L-1) | 0.1 |
| Ec,ref (相对于标准锂电极)/V | -0.55 |
| ηF,ref /% | 60 |
| α | 0.5 |
| 参数 | 数值 |
|---|---|
| εbed | 0.32 |
| εtot | 0.728 |
| ρabs/(kg·m-3) | 2507 |
| dp/m | 2×104 |
| ĉp,abs/(kJ· | 1.21 |
| λS/(W·m-1·K-1) | 0.99 |
| qNH₃,max/(molNH₃· | 4.2 |
| kabs/(molNH₃·s-1·bar-1· | 0.4668 |
| Kabs/bar6 | 5×10-24 |
| kdes/(molNH₃·s-1·bar-1· | 7.002×10-3 |
| pNH₃,ref/bar | 1 |
| Tref/K | 648.05 |
| ΔHabs,NH₃/(J·mol-1) | -87000 |
表2 吸收器模型中各参数值[14, 24-29]
Table 2 Values of the parameters in the absorber model[14, 24-29]
| 参数 | 数值 |
|---|---|
| εbed | 0.32 |
| εtot | 0.728 |
| ρabs/(kg·m-3) | 2507 |
| dp/m | 2×104 |
| ĉp,abs/(kJ· | 1.21 |
| λS/(W·m-1·K-1) | 0.99 |
| qNH₃,max/(molNH₃· | 4.2 |
| kabs/(molNH₃·s-1·bar-1· | 0.4668 |
| Kabs/bar6 | 5×10-24 |
| kdes/(molNH₃·s-1·bar-1· | 7.002×10-3 |
| pNH₃,ref/bar | 1 |
| Tref/K | 648.05 |
| ΔHabs,NH₃/(J·mol-1) | -87000 |
| 参数 | 数值 |
|---|---|
| Tcool,cw,in/K | 298 |
| Tcool,cw,out/K | 313 |
| ĉp,cw/(kJ·kg-1·K-1) | 4.18 |
| κ/(kW·m-2·K-1) | 0.03 |
表3 冷却器模型中各参数值[14, 32]
Table 3 Parameter values in the cooler model[14, 32]
| 参数 | 数值 |
|---|---|
| Tcool,cw,in/K | 298 |
| Tcool,cw,out/K | 313 |
| ĉp,cw/(kJ·kg-1·K-1) | 4.18 |
| κ/(kW·m-2·K-1) | 0.03 |
| 设备 | 基准χ | Ccap,fix/ (104 CNY) | Ccap,ref / (104 CNY) | χref | β |
|---|---|---|---|---|---|
| 吸收器 | 吸收管面积/m2 | 64.4 | 1000 | 100 | 0.68 |
| 压缩机 | 功率/kW | 7.13 | 7410 | 1000 | 0.90 |
| 冷却器 | 面积/m2 | 27.6 | 200 | 100 | 0.71 |
| 泵 | 功率/kW | 7.13 | 14.5 | 23 | 0.29 |
表4 其他单元投资成本参数[14, 35]
Table 4 Capital cost parameters for other units[14, 35]
| 设备 | 基准χ | Ccap,fix/ (104 CNY) | Ccap,ref / (104 CNY) | χref | β |
|---|---|---|---|---|---|
| 吸收器 | 吸收管面积/m2 | 64.4 | 1000 | 100 | 0.68 |
| 压缩机 | 功率/kW | 7.13 | 7410 | 1000 | 0.90 |
| 冷却器 | 面积/m2 | 27.6 | 200 | 100 | 0.71 |
| 泵 | 功率/kW | 7.13 | 14.5 | 23 | 0.29 |
| 参数 | 数值 |
|---|---|
| prxn,N₂,in/bar | 15 |
| cEtOH/(mol·L-1) | 0.1 |
| Ec(相对于标准锂电极)/V | -0.55 |
| Ea(相对于标准氢电极)/V | 0.60 |
| α | 0.5 |
| Trxn/K | 298 |
| Lrxn/m | 2 |
| drxn/m | 1 |
| 0.09 | |
| 0.03 | |
| Aele/m2 | 1000 |
表5 反应器基础工况
Table 5 Basic working conditions of the reactor
| 参数 | 数值 |
|---|---|
| prxn,N₂,in/bar | 15 |
| cEtOH/(mol·L-1) | 0.1 |
| Ec(相对于标准锂电极)/V | -0.55 |
| Ea(相对于标准氢电极)/V | 0.60 |
| α | 0.5 |
| Trxn/K | 298 |
| Lrxn/m | 2 |
| drxn/m | 1 |
| 0.09 | |
| 0.03 | |
| Aele/m2 | 1000 |
| 反应器模型 | 出口氨稳态质量流率/(kg·h-1) |
|---|---|
| 稳态、轴向恒气速 | 86.45 |
| 稳态、轴向变气速 | 87.01 |
| 动态、轴向恒气速 | 86.41 |
| 动态、轴向变气速 | 86.92 |
表6 不同反应器模型的稳态模拟结果
Table 6 Steady-state simulation results of different reactor models
| 反应器模型 | 出口氨稳态质量流率/(kg·h-1) |
|---|---|
| 稳态、轴向恒气速 | 86.45 |
| 稳态、轴向变气速 | 87.01 |
| 动态、轴向恒气速 | 86.41 |
| 动态、轴向变气速 | 86.92 |
| Ec(相对于标准锂电极)/V | Aele/m2 | |
|---|---|---|
| 高负载量 | 低负载量 | |
| -0.50 | 17095 | 17095 |
| -0.52 | 5315 | 5315 |
| -0.54 | 1652 | 1652 |
| -0.56 | 514 | 514 |
| -0.58 | 160 | 160 |
| -0.60 | 50 | 50 |
表7 相同产量、不同催化剂负载量与电压下反应器电极面积的优化结果
Table 7 Optimal reactor electrode area under constant production with different catalyst loading and voltages
| Ec(相对于标准锂电极)/V | Aele/m2 | |
|---|---|---|
| 高负载量 | 低负载量 | |
| -0.50 | 17095 | 17095 |
| -0.52 | 5315 | 5315 |
| -0.54 | 1652 | 1652 |
| -0.56 | 514 | 514 |
| -0.58 | 160 | 160 |
| -0.60 | 50 | 50 |
| 规模/(kg·h-1) | Aele/m2 | Ec(相对于标准锂电极)/V | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 201 | -0.57 | 2.05 | 1.03 | 1 | 5 |
| 500 | 1078 | -0.57 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 2157 | -0.57 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 10784 | -0.57 | 7.58 | 3.79 | 1 | 5 |
| 10000 | 21568 | -0.57 | 9.54 | 4.77 | 1 | 5 |
表8 高贵金属负载量下不同规模电化学合成氨流程各参数的优化结果
Table 8 Optimal parameters for the processes of electrochemical ammonia synthesis at different scales with high loading of precious metals
| 规模/(kg·h-1) | Aele/m2 | Ec(相对于标准锂电极)/V | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 201 | -0.57 | 2.05 | 1.03 | 1 | 5 |
| 500 | 1078 | -0.57 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 2157 | -0.57 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 10784 | -0.57 | 7.58 | 3.79 | 1 | 5 |
| 10000 | 21568 | -0.57 | 9.54 | 4.77 | 1 | 5 |
| 规模/(kg·h-1) | Aele/m2 | Ec/V(相对于标准锂电极) | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 119 | -0.58 | 2.05 | 1.03 | 1 | 5 |
| 500 | 595 | -0.58 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 1190 | -0.58 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 5948 | -0.58 | 7.58 | 3.79 | 1 | 5 |
| 10000 | 11895 | -0.58 | 9.54 | 4.77 | 1 | 5 |
表9 低贵金属负载量下不同规模电化学合成氨流程各参数的优化结果
Table 9 Optimal parameters for the processes of electrochemical ammonia synthesis at different scales with low loading of precious metals
| 规模/(kg·h-1) | Aele/m2 | Ec/V(相对于标准锂电极) | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 119 | -0.58 | 2.05 | 1.03 | 1 | 5 |
| 500 | 595 | -0.58 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 1190 | -0.58 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 5948 | -0.58 | 7.58 | 3.79 | 1 | 5 |
| 10000 | 11895 | -0.58 | 9.54 | 4.77 | 1 | 5 |
| 规模/(kg·h-1) | Aele/m2 | Ec(相对于标准锂电极)/V | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 32 | -0.60 | 2.06 | 1.03 | 1 | 5 |
| 500 | 162 | -0.60 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 324 | -0.60 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 1618 | -0.60 | 5.25 | 2.63 | 3 | 5 |
| 10000 | 3235 | -0.60 | 9.54 | 4.77 | 1 | 5 |
表10 低电价下不同规模电化学合成氨流程各参量的优化结果
Table 10 Optimal parameters for the processes of electrochemical ammonia synthesis at different scales with a low electricity price
| 规模/(kg·h-1) | Aele/m2 | Ec(相对于标准锂电极)/V | Labs/m | dabs/m | nabs | prxn,N₂,in/bar |
|---|---|---|---|---|---|---|
| 100 | 32 | -0.60 | 2.06 | 1.03 | 1 | 5 |
| 500 | 162 | -0.60 | 3.52 | 1.76 | 1 | 5 |
| 1000 | 324 | -0.60 | 4.43 | 2.22 | 1 | 5 |
| 5000 | 1618 | -0.60 | 5.25 | 2.63 | 3 | 5 |
| 10000 | 3235 | -0.60 | 9.54 | 4.77 | 1 | 5 |
| [1] | Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1: 636-639. |
| [2] | Swaminathan B, Sukalac K E. Technology transfer and mitigation of climate change: the fertilizer industry perspective[C]//Kessels J. IPCC Expert Meeting on Industrial Technology Development, Transfer and Diffusion. Tokyo, Japan: IPCC Working Group Ⅲ Technical Support Unit, 2004: 140-154. |
| [3] | MacFarlane D R, Cherepanov P V, Choi J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
| [4] | Ojha M, Dhiman A. Problem, failure and safety analysis of ammonia plant: A review[J]. International Review of Chemical Engineering, 2010, 2(6): 631-646. |
| [5] | Fichter F, Girard P, Erlenmeyer H. Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher Temperatur[J]. Helvetica Chimica Acta, 1930, 13(6): 1228-1236. |
| [6] | Tsuneto A, Kudo A, Sakata T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium[J]. Chemistry Letters, 1993, 22(5): 851-854. |
| [7] | Tsuneto A, Kudo A, Sakata T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3 [J]. Journal of Electroanalytical Chemistry, 1994, 367(1/2): 183-188. |
| [8] | Iqbal M S, Ruan Y K, Iftikhar R, et al. Lithium-mediated electrochemical dinitrogen reduction reaction[J]. Industrial Chemistry & Materials, 2023, 1(4): 563-581. |
| [9] | Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
| [10] | Du H L, Chatti M, Hodgetts R Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727. |
| [11] | Fu X B, Pedersen J B, Zhou Y Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
| [12] | Sun Z X, Zhang Y C, Huang H J, et al. Modeling and simulation of dynamic characteristics of a green ammonia synthesis system[J]. Energy Conversion and Management, 2024, 300: 117893. |
| [13] | Penkuhn T, Spengler T, Püchert H, et al. Environmental integrated production planning for the ammonia synthesis[J]. European Journal of Operational Research, 1997, 97(2): 327-336. |
| [14] | Palys M J, McCormick A, Cussler E L, et al. Modeling and optimal design of absorbent enhanced ammonia synthesis[J]. Processes, 2018, 6(7): 91. |
| [15] | 王三一, 黄文来. 一种电化学合成氨的方法和装置系统: 118480786A[P]. 2024-08-13. |
| Wang S Y, Huang W L. A process and system for electrochemical ammonia synthesis: 118480786A[P]. 2024-08-13. | |
| [16] | Wagner K, Malmali M, Smith C, et al. Column absorption for reproducible cyclic separation in small scale ammonia synthesis[J]. AIChE Journal, 2017, 63(7): 3058-3068. |
| [17] | Malmali M, Le G, Hendrickson J, et al. Better absorbents for ammonia separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6536-6546. |
| [18] | Smith C, McCormick A V, Cussler E L. Optimizing the conditions for ammonia production using absorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4019-4029. |
| [19] | Dickinson E J F, Wain A J. The Butler-Volmer equation in electrochemical theory: origins, value, and practical application[J]. Journal of Electroanalytical Chemistry, 2020, 872: 114145. |
| [20] | Bard A J, Faulkner L R, White H S. Electrochemical Methods: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2022. |
| [21] | Mann R F, Amphlett J C, Peppley B A, et al. Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 775-781. |
| [22] | Zwiebel I. Fixed bed adsorption with variable gas velocity due to pressure drop[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(4): 803-807. |
| [23] | Al-Janabi N, Vakili R, Kalumpasut P, et al. Velocity variation effect in fixed bed columns: a case study of CO2 capture using porous solid adsorbents[J]. AIChE Journal, 2018, 64(6): 2189-2197. |
| [24] | Specchia V, Baldi G, Sicardi S. Heat transfer in packed bed reactors with one phase flow[J]. Chemical Engineering Communications, 1980, 4(1/2/3): 361-380. |
| [26] | Grove A S, Grove A. Physics and Technology of Semiconductor Devices[M]. New York: Wiley, 1991. |
| [27] | Smith C, Malmali M, Liu C Y, et al. Rates of ammonia absorption and release in calcium chloride[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11827-11835. |
| [28] | Mofidi S A H, Udell K S. Study of heat and mass transfer in MgCl2/NH3 thermochemical batteries[J]. Journal of Energy Resources Technology, 2017, 139(3): 032005. |
| [29] | Sørensen R Z, Hummelshøj J S, Klerke A, et al. Indirect, reversible high-density hydrogen storage in compact metal ammine salts[J]. Journal of the American Chemical Society, 2008, 130(27): 8660-8668. |
| [30] | 郁永章, 姜培正, 孙嗣莹. 压缩机工程手册[M]. 北京: 中国石化出版社, 2012. |
| Yu Y Z, Jiang P Z, Sun S Y. Compressor Engineering Manual[M]. Beijing: China Petrochemical Press, 2012. | |
| [31] | gPROMS Process 2.2.2[Z]. London: Process Systems Enterprise, 2022. |
| [32] | Osborne N S, Stimson H F, Ginnings D C. Measurements of heat capacity and heat of vaporization of water in the range 0℃ to 100℃ [J]. National Bureau of Standards Handbook, 1961, 2(77): 277-340. |
| [33] | 方远鑫, 肖武, 姜晓滨, 等. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749. |
| Fang Y X, Xiao W, Jiang X B, et al. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid[J]. CIESC Journal, 2021, 72(9): 4740-4749. | |
| [34] | Gregory K, William G, Julie F. Heavy-duty fuel cell system cost—2022[R]. Washington, DC: U.S. Department of Energy, 2023. |
| [35] | Woods D R. Rules of Thumb in Engineering Practice[M]. New York: John Wiley & Sons, 2007. |
| [25] | Peng Y X, Reddy R G. Density, viscosity, vapor pressure and thermal conductivity of MgCl2 + Mg salts[C]//Reddy R G, Chaubal P, Pistorius P C, et al. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Cham: Springer International Publishing, 2016: 1169-1175. |
| [36] | Sun Z, Chen X X, Kuo P C, et al. Co-feeding biomass and municipal solid waste for enhanced hydrogen and synthetic natural gas yields employing chemical looping process[J]. Chemical Engineering Journal, 2024, 493: 152487. |
| [37] | Ilas A, Ralon P, Rodriguez A, et al. Renewable power generation costs in 2017[R]. Masdar City: International Renewable Energy Agency, 2018. |
| [38] | 内蒙古自治区能源局. 内蒙古自治区能源局关于做好2024年内蒙古电力多边交易市场中长期交易有关事宜的通知[Z]. 内能源电力字[2024]55号, 2024. |
| Energy Bureau of Inner Mongolia Autonomous Region. Notice of the Energy Administration of Inner Mongolia Autonomous Region on relevant matters concerning medium and long-term trading in the 2024 Inner Mongolia electricity multilateral trading market[Z]. No. 55 [2024], 2024. | |
| [39] | 宁夏回族自治区发展和改革委员会. 自治区发展改革委关于做好2024年电力中长期交易有关事项的通知[Z]. 宁发改运行[2023]807号, 2023. |
| Ningxia Hui Autonomous Region Development and Reform Commission. Notice of the development and reform commission of autonomous region on relevant matters regarding medium and long-term electricity trading in 2024[Z]. No. 807 [2023], 2023. | |
| [40] | Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
| [41] | Péneloux A, Rauzy E, Fréze R. A consistent correction for Redlich-Kwong-Soave volumes[J]. Fluid Phase Equilibria, 1982, 8(1): 7-23. |
| [42] | Huber M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERTRAPP), version 3.2[Z]. Gaithersburg: U.S. National Institute of Standards and Technology, 2007. |
| [1] | 马爱华, 赵帅, 王林, 常明慧. 太阳能吸收制冷循环动态特性仿真方法研究[J]. 化工学报, 2025, 76(S1): 318-325. |
| [2] | 吴成云, 孙浩然. 民用飞机空调系统性能仿真与燃油代偿损失研究[J]. 化工学报, 2025, 76(S1): 351-359. |
| [3] | 肖鑫, 杨耿, 王云峰. 基于TRNSYS的太阳能梯级蓄热热泵系统模拟[J]. 化工学报, 2025, 76(S1): 393-400. |
| [4] | 周轶磊, 李智, 彭鑫. 基于代理模型的连续重整反应过程自优化控制结构设计[J]. 化工学报, 2025, 76(9): 4499-4511. |
| [5] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [6] | 王芳, 马素霞, 田营, 刘众元. 基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法[J]. 化工学报, 2025, 76(7): 3416-3425. |
| [7] | 王金江, 鲁振杰, 安维峥, 杨风允, 秦小刚. ORC发电系统工艺过程预警诊断技术研究与展望[J]. 化工学报, 2025, 76(7): 3137-3152. |
| [8] | 李琳, 王明媚, 宋二伟, 王雯雯, 张耀昌, 王二强. 异戊二烯-正戊烷分离工艺的热力学分析及优化[J]. 化工学报, 2025, 76(6): 2549-2558. |
| [9] | 娄嘉诚, 常福城, 刘也铭, 李志斌, 李熙, 李会雄. 1000 MW超超临界直流锅炉水冷壁瞬态响应特性的建模与仿真研究[J]. 化工学报, 2025, 76(6): 2638-2651. |
| [10] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [11] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| [12] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [13] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [14] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [15] | 郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号