化工学报 ›› 2025, Vol. 76 ›› Issue (2): 755-768.DOI: 10.11949/0438-1157.20241088
郭恭涵1(), 丁晖殿2(
), 李强2, 贾胜坤3(
), 钱行1(
), 苑杨1, 陈海胜1, 罗祎青3
收稿日期:
2024-09-27
修回日期:
2024-11-04
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
贾胜坤,钱行
作者简介:
郭恭涵(1999—),男,硕士研究生,2022210478@buct.edu.cn基金资助:
Gonghan GUO1(), Huidian DING2(
), Qiang LI2, Shengkun JIA3(
), Xing QIAN1(
), Yang YUAN1, Haisheng CHEN1, Yiqing LUO3
Received:
2024-09-27
Revised:
2024-11-04
Online:
2025-03-25
Published:
2025-03-10
Contact:
Shengkun JIA, Xing QIAN
摘要:
间歇精馏是一种重要的化工分离技术,在处理小批量、多组分生产中具有显著优势。为提高间歇精馏性能,研究者提出了多种间歇精馏过程强化结构,如中间储罐间歇精馏塔(MVBDC)、隔板间歇精馏塔(DWBDC)等。本文建立了传统间歇精馏塔(BDC)、MVBDC、DWBDC三种典型结构的动态仿真模型,搭建了控制系统,并通过贝叶斯优化算法对三种间歇精馏的操作变量进行了严格优化,通过分析严格优化后的结果对比了三种精馏过程结构的优劣。结果表明,DWBDC具有最短的操作时间和最好的经济效益,是一种优越的间歇精馏过程强化结构。
中图分类号:
郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768.
Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process[J]. CIESC Journal, 2025, 76(2): 755-768.
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.3 | 40 | 操纵回流量控制回流罐中杂质浓度 |
CClow | 2.5 | 30 | 操纵再沸器热负荷控制 |
表1 MVBDC浓度控制器参数及作用
Table 1 Parameters and functions of the concentration controllers in MVBDC
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.3 | 40 | 操纵回流量控制回流罐中杂质浓度 |
CClow | 2.5 | 30 | 操纵再沸器热负荷控制 |
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.1 | 30 | 操纵回流量控制回流罐中杂质浓度 |
CCmid | 1.5 | 10 | 操纵液相分配比控制S1中杂质浓度 |
CClow | 42.0 | 22 | 操纵再沸器热负荷Q2控制塔釜杂质浓度 |
表2 DWBDC浓度控制器参数及作用
Table 2 Parameters and functions of the concentration controllers in DWBDC
控制器 | 比例增益 | 积分时间/min | 作用 |
---|---|---|---|
CCtop | 0.1 | 30 | 操纵回流量控制回流罐中杂质浓度 |
CCmid | 1.5 | 10 | 操纵液相分配比控制S1中杂质浓度 |
CClow | 42.0 | 22 | 操纵再沸器热负荷Q2控制塔釜杂质浓度 |
项目 | 价格 |
---|---|
BTX混合物原料 | 63.61 USD/kmol |
苯 | 78.125 USD/kmol |
甲苯 | 82.58 USD/kmol |
邻二甲苯 | 93.36 USD/kmol |
冷却水(25~30℃) | 0.354 USD/GJ |
低压蒸汽(5 bar,160℃) | 13.28 USD/GJ |
中压蒸汽(10 bar,184℃) | 14.19 USD/GJ |
高压蒸汽(41 bar,254℃) | 17.7 USD/GJ |
表3 原料、产品及公用工程价格
Table 3 Feed, products and utility prices
项目 | 价格 |
---|---|
BTX混合物原料 | 63.61 USD/kmol |
苯 | 78.125 USD/kmol |
甲苯 | 82.58 USD/kmol |
邻二甲苯 | 93.36 USD/kmol |
冷却水(25~30℃) | 0.354 USD/GJ |
低压蒸汽(5 bar,160℃) | 13.28 USD/GJ |
中压蒸汽(10 bar,184℃) | 14.19 USD/GJ |
高压蒸汽(41 bar,254℃) | 17.7 USD/GJ |
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 变量范围 | 优化变量 | 变量范围 | 优化变量 | 变量范围 |
收集B阶段的回流比R0 | 1.5~4.0 | 塔顶回流量初值F0/(kg/h) | 9500~13500 | 塔顶回流量初值F0/(kg/h) | 10000~16000 |
收集B阶段增大后的回流比R1 | 6~8 | 25~55 | 液相分配比初值βl | 0.45~0.90 | |
BT切割阶段的回流比R2 | 2~6 | 再沸器热负荷Q/(GJ/h) | 2~7 | Section1热负荷Q1/(GJ/h) | 3.8~5.0 |
切换到收集T阶段的临界浓度xT | 0.91~0.98 | Section3热负荷初值Q2/(GJ/h) | 0~3.5 | ||
收集T阶段的回流比R3 | 1~5 | ||||
收集T阶段增大后的回流比R4 | 6~9 | ||||
TX切割阶段的回流比R5 | 4~8 | ||||
再沸器热负荷Q/(GJ/h) | 4.0~7.5 |
表4 优化变量及范围
Table 4 Optimization variables and ranges
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 变量范围 | 优化变量 | 变量范围 | 优化变量 | 变量范围 |
收集B阶段的回流比R0 | 1.5~4.0 | 塔顶回流量初值F0/(kg/h) | 9500~13500 | 塔顶回流量初值F0/(kg/h) | 10000~16000 |
收集B阶段增大后的回流比R1 | 6~8 | 25~55 | 液相分配比初值βl | 0.45~0.90 | |
BT切割阶段的回流比R2 | 2~6 | 再沸器热负荷Q/(GJ/h) | 2~7 | Section1热负荷Q1/(GJ/h) | 3.8~5.0 |
切换到收集T阶段的临界浓度xT | 0.91~0.98 | Section3热负荷初值Q2/(GJ/h) | 0~3.5 | ||
收集T阶段的回流比R3 | 1~5 | ||||
收集T阶段增大后的回流比R4 | 6~9 | ||||
TX切割阶段的回流比R5 | 4~8 | ||||
再沸器热负荷Q/(GJ/h) | 4.0~7.5 |
参数 | 第一次迭代 | 最后一次迭代 |
---|---|---|
F0/(kg/h) | 13114.061 | 13195.633 |
βl | 0.613 | 0.569 |
Q1/(GJ/h) | 3.963 | 4.478 |
Q2/(GJ/h) | 1.111 | 1.830 |
利润函数预测值/(USD/h) | 411.765 | 1108.945 |
利润函数实际值/(USD/h) | 813.404 | 1068.874 |
样本点数量 | 40 | 120 |
表5 代理模型在新加点的预测值
Table 5 The predicted values of the surrogate model at the newly added points
参数 | 第一次迭代 | 最后一次迭代 |
---|---|---|
F0/(kg/h) | 13114.061 | 13195.633 |
βl | 0.613 | 0.569 |
Q1/(GJ/h) | 3.963 | 4.478 |
Q2/(GJ/h) | 1.111 | 1.830 |
利润函数预测值/(USD/h) | 411.765 | 1108.945 |
利润函数实际值/(USD/h) | 813.404 | 1068.874 |
样本点数量 | 40 | 120 |
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 最优值 | 优化变量 | 最优值 | 优化变量 | 最优值 |
R0 | 3.047 | F0/(kg/h) | 10563.967 | F0/(kg/h) | 12209.509 |
xT | 0.924 | Vm/% | 37.418 | βl | 0.628 |
R1 | 6.983 | Q/(GJ/h) | 4.375 | Q1/(GJ/h) | 4.559 |
R2 | 5.904 | Q2/(GJ/h) | 2.857 | ||
R3 | 1.260 | ||||
R4 | 6.967 | ||||
R5 | 6.115 | ||||
Q/(GJ/h) | 7.228 |
表6 最优操作变量
Table 6 Optimal operational variables
BDC | MVBDC | DWBDC | |||
---|---|---|---|---|---|
优化变量 | 最优值 | 优化变量 | 最优值 | 优化变量 | 最优值 |
R0 | 3.047 | F0/(kg/h) | 10563.967 | F0/(kg/h) | 12209.509 |
xT | 0.924 | Vm/% | 37.418 | βl | 0.628 |
R1 | 6.983 | Q/(GJ/h) | 4.375 | Q1/(GJ/h) | 4.559 |
R2 | 5.904 | Q2/(GJ/h) | 2.857 | ||
R3 | 1.260 | ||||
R4 | 6.967 | ||||
R5 | 6.115 | ||||
Q/(GJ/h) | 7.228 |
参数 | BDC | MVBDC | DWBDC |
---|---|---|---|
B收集量/kmol | 228.014 | 257.005 | 234.650 |
T收集量/kmol | 200.483 | 227.173 | 228.736 |
X收集量/kmol | 304.848 | 313.915 | 325.188 |
B纯度/%(摩尔分数) | 99.00 | 99.03 | 99.08 |
T纯度/%(摩尔分数) | 99.00 | 99.00 | 99.11 |
X纯度/%(摩尔分数) | 99.00 | 99.20 | 99.00 |
总能耗/GJ | 317.926 | 133.050 | 166.992 |
冷热工程总费用/USD | 2190.663 | 9905.187 | 1202.905 |
产品收益/USD | 62823.928 | 68145.549 | 67580.544 |
总时间/h | 20.78 | 16.44 | 13.74 |
利润函数/(USD/h) | 484.149 | 967.163 | 1101.085 |
表7 间歇精馏最优结果
Table 7 Optimal results of batch distillation
参数 | BDC | MVBDC | DWBDC |
---|---|---|---|
B收集量/kmol | 228.014 | 257.005 | 234.650 |
T收集量/kmol | 200.483 | 227.173 | 228.736 |
X收集量/kmol | 304.848 | 313.915 | 325.188 |
B纯度/%(摩尔分数) | 99.00 | 99.03 | 99.08 |
T纯度/%(摩尔分数) | 99.00 | 99.00 | 99.11 |
X纯度/%(摩尔分数) | 99.00 | 99.20 | 99.00 |
总能耗/GJ | 317.926 | 133.050 | 166.992 |
冷热工程总费用/USD | 2190.663 | 9905.187 | 1202.905 |
产品收益/USD | 62823.928 | 68145.549 | 67580.544 |
总时间/h | 20.78 | 16.44 | 13.74 |
利润函数/(USD/h) | 484.149 | 967.163 | 1101.085 |
项目 | BDC | MVBDC | DWBDC |
---|---|---|---|
原料量/kmol | 795.031 | 806.323 | 805.671 |
B摩尔分数/% | 30.94 | 31.99 | 29.30 |
T摩尔分数/% | 29.62 | 29.17 | 30.43 |
X摩尔分数/% | 39.45 | 38.84 | 40.28 |
表8 三种间歇精馏进料量
Table 8 Feed rates of three types of batch distillation
项目 | BDC | MVBDC | DWBDC |
---|---|---|---|
原料量/kmol | 795.031 | 806.323 | 805.671 |
B摩尔分数/% | 30.94 | 31.99 | 29.30 |
T摩尔分数/% | 29.62 | 29.17 | 30.43 |
X摩尔分数/% | 39.45 | 38.84 | 40.28 |
1 | Górak A A S. Distillation: Fundamentals and Principles[M]. Burlington: Elsevier Science, 2014. |
2 | Robinson C S, Gilliland E R. Elements of Fractional Distillation[M]. 4th ed. New York: McGraw-Hill, 1950. |
3 | Lotter S P, Diwekar U M. Shortcut models and feasibility considerations for emerging batch distillation columns[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 760-770. |
4 | Barolo M, Guarise G B, Rienzi S A, et al. Understanding the dynamics of a batch distillation column with a middle vessel[J]. Computers & Chemical Engineering, 1998, 22: S37-S44. |
5 | Sørense E, Skogestad S. Comparison of regular and inverted batch distillation[J]. Chemical Engineering Science, 1996, 51(22): 4949-4962. |
6 | Wittgens B, Skogestad S. Closed operation of multivessel batch distillation: experimental verification[J]. AIChE Journal, 2000, 46(6): 1209-1217. |
7 | Luyben W L. Aspen dynamics simulation of a middle-vessel batch distillation process[J]. Journal of Process Control, 2015, 33: 49-59. |
8 | Lopez-Saucedo E S, Grossmann I E, Segovia-Hernandez J G, et al. Rigorous modeling, simulation and optimization of a conventional and nonconventional batch reactive distillation column: a comparative study of dynamic optimization approaches[J]. Chemical Engineering Research and Design, 2016, 111: 83-99. |
9 | Diwekar U, Agrawal R. Novel use of dividing wall columns for intensification multicomponent batch distillations[J]. Chemical Engineering and Processing - Process Intensification, 2021, 164: 108400. |
10 | Furlonge H I, Pantelides C C, Sørensen E. Optimal operation of multivessel batch distillation columns[J]. AIChE Journal, 1999, 45(4): 781-801. |
11 | Farhat S, Czernicki M, Pibouleau L, et al. Optimization of multiple-fraction batch distillation by nonlinear programming[J]. AIChE Journal, 1990, 36(9): 1349-1360. |
12 | Jain S, Kim J K, Smith R. Operational optimization of batch distillation systems[J]. Industrial & Engineering Chemistry Research, 2012, 51(16): 5749-5761. |
13 | Safdarnejad S M, Gallacher J R, Hedengren J D. Dynamic parameter estimation and optimization for batch distillation[J]. Computers & Chemical Engineering, 2016, 86: 18-32. |
14 | Quirante N, Caballero J A. Large scale optimization of a sour water stripping plant using surrogate models[J]. Computers & Chemical Engineering, 2016, 92: 143-162. |
15 | Wang H H, Wang Z B, Zhou Q, et al. Optimization and sliding mode control of dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2020, 59(45): 20102-20111. |
16 | Qian X, Jia S K, Huang K J, et al. Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods[J]. Journal of Cleaner Production, 2020, 273: 123041. |
17 | Barreto A A, Rodriguez-Donis I, Gerbaud V, et al. Optimization of heterogeneous batch extractive distillation[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5204-5217. |
18 | Cheng J K, Lee H Y, Huang H P, et al. Optimal steady-state design of reactive distillation processes using simulated annealing[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 188-196. |
19 | Hanke M, Li P. Simulated annealing for the optimization of batch distillation processes[J]. Computers & Chemical Engineering, 2000, 24(1): 1-8. |
20 | Chen P, Merrick B M, Brazil T J. Bayesian optimization for broadband high-efficiency power amplifier designs[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4263-4272. |
21 | Huan X, Marzouk Y M. Simulation-based optimal Bayesian experimental design for nonlinear systems[J]. Journal of Computational Physics, 2013, 232(1): 288-317. |
22 | Ragueneau Q, Laurent L, Legay A, et al. A constrained Bayesian optimization framework for structural vibrations with local nonlinearities[J]. Structural and Multidisciplinary Optimization, 2024, 67(4): 47. |
23 | Liang M K, Song J Y, Zhao K F, et al. Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm[J]. Computers & Chemical Engineering, 2022, 166: 107978. |
24 | Wang K, Dowling A W. Bayesian optimization for chemical products and functional materials[J]. Current Opinion in Chemical Engineering, 2022, 36: 100728. |
25 | Kerkhof L H J, Vissers H J M. On the profit of optimum control in batch distillation[J]. Chemical Engineering Science, 1978, 33(7): 961-970. |
26 | Diwekar U, Rivier C. Missing components in multicomponent batch distillation and optimal control[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17455-17461. |
27 | Yadav G, Singh A, Dutta A, et al. Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste[J]. Energy & Environmental Science, 2023, 16(9): 3638-3653. |
28 | Pérez-Uresti S I, Adrián-Mendiola J M, El-Halwagi M M, et al. Techno-economic assessment of benzene production from shale gas[J]. Processes, 2017, 5(3): 33. |
29 | Mevawala C, Bai X W, Hu J L, et al. Plant-wide modeling and techno-economic analysis of a direct non-oxidative methane dehydroaromatization process via conventional and microwave-assisted catalysis[J]. Applied Energy, 2023, 336: 120795. |
30 | Khosravi-Nikou M, Shahmoradi A, Shariati A, et al. Experimental and techno-economic investigation of industrial para-xylene plant revamping to produce meta-xylene[J]. Scientific Reports, 2023, 13(1): 12534. |
31 | Qian X, Huang K J, Chen H S, et al. Intensifying Kaibel dividing-wall column via vapor recompression heat pump[J]. Chemical Engineering Research and Design, 2019, 142: 195-203. |
32 | 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090. |
Cui J X, Yang B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090. | |
33 | 赵克凡, 贾胜坤, 罗祎青, 等. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341. |
Zhao K F, Jia S K, Luo Y Q, et al. Optimal design for dividing wall column using online Kriging surrogate model-based optimization method[J]. CIESC Journal, 2022, 73(1): 332-341. | |
34 | Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39(3): 308-319. |
35 | Gramacy R B. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences[M]. Boca Raton, FL: CRC Press, 2020. |
36 | Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. |
37 | Archetti F, Candelieri A. Bayesian Optimization and Data Science[M]. Cham: Springer, 2019. |
38 | Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. |
39 | Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. |
40 | Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerosapce Sciences, 2009, 45(1/2/3): 50-79. |
41 | Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
[1] | 杨林睿, 刘鉴漪, 李玲, 何永超, 郑凯天, 任建坡, 许春建. 苯/环己烷/环己烯萃取精馏过程的流程设计与节能[J]. 化工学报, 2025, 76(2): 731-743. |
[2] | 董举, 余留洋, 贾晟哲, 史连军, 王诗瀚, 胡国涛, 汤伟伟, 王静康, 龚俊波. 电子级磷酸的结晶精制技术发展现状与研究进展[J]. 化工学报, 2025, 76(2): 438-453. |
[3] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
[4] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
[5] | 孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717. |
[6] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[7] | 杨晔, 卢建刚. 基于融合Transformer的门尼系数预测建模研究[J]. 化工学报, 2025, 76(1): 266-282. |
[8] | 张俊杰, 陈源, 李运堂, 李孝禄, 王冰清, 彭旭东. 超椭圆织构浮动坝箔片端面气膜密封动态性能分析与优化[J]. 化工学报, 2025, 76(1): 296-310. |
[9] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
[10] | 任超, 王凯, 韩洁, 阳春华. 事件-时间触发的慢时变工业过程动态调度方法[J]. 化工学报, 2025, 76(1): 256-265. |
[11] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
[12] | 蒲黎明, 汪贵, 郑春来, 王科, 向腾龙, 王治红. 混合制冷级联天然气液化工艺优化及分析[J]. 化工学报, 2024, 75(S1): 267-275. |
[13] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[14] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[15] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||