化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5486-5494.DOI: 10.11949/0438-1157.20250254
嗪树脂的制备及耐热性能研究
收稿日期:2025-03-14
修回日期:2025-04-25
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
费正皓,沙新龙
作者简介:费正皓(1972—),男,博士,教授,feizhenghao@163.com
基金资助:
Zhenghao FEI1(
), Xiuzhi YANG2, Zongtang LIU1, Xinlong SHA1(
)
Received:2025-03-14
Revised:2025-04-25
Online:2025-10-25
Published:2025-11-25
Contact:
Zhenghao FEI, Xinlong SHA
摘要:
从生物质原料制备可低温固化的高性能苯并
嗪树脂对满足工业领域可持续发展具有重要意义。但制备兼具低固化温度和高性能的苯并
嗪树脂是当前领域的难点,为了克服这一困难,以生物质香草醛和对羟基苯甲醛为原料,合成了含氰基基团的生物质单体,采用无溶剂法合成了两种苯并
嗪单体HN-fa和VN-fa。通过热分析(DSC)研究了氰基对苯并
嗪开环聚合的影响。由于分子内氰基官能团的存在,HN-fa和VN-fa的固化峰值温度分别低至200和206℃,将单体热固化聚合制得poly(HN-fa)和poly(VN-fa),并对其热和阻燃性能进行了测试。制得的树脂具有优异的耐热性,poly(HN-fa)和poly(VN-fa)的玻璃化转变温度(Tg)分别高达247和189℃,此外poly(HN-fa)和poly(VN-fa)还具有优异的阻燃性能。研究结果表明,氰基的引入不仅可以降低树脂的固化温度,对于提高树脂的耐热性和阻燃性也有积极的影响。
中图分类号:
费正皓, 杨秀芝, 刘总堂, 沙新龙. 氰基衍生苯并
嗪树脂的制备及耐热性能研究[J]. 化工学报, 2025, 76(10): 5486-5494.
Zhenghao FEI, Xiuzhi YANG, Zongtang LIU, Xinlong SHA. Preparation and heat resistance of cyanide-derived benzoxazine resins[J]. CIESC Journal, 2025, 76(10): 5486-5494.
图3 HN-fa和VN-fa的1H NMR[(a)、(b)],13C NMR[(c)、(d)]和HRMS[(e)、(f)]谱图
Fig.3 1H NMR spectra [(a), (b)], 13C NMR spectra [(c), (d)] and HRMS spectra [(e),(f)] of HN-fa and VN-fa
| 样品 | 单体结构式 | Tg/℃ | Tdi/℃ | YC/% | HRC/(J·g-1·K-1) | THR/(kJ·g-1) |
|---|---|---|---|---|---|---|
| poly(PH-a) | ![]() | 133 | 292 | 38 | 118 | 13.5 |
| poly(GU-fa) | ![]() | — | 320 | 56 | 70.6 | 6.5 |
| poly(HN-fa) | ![]() | 247 | 338 | 63.2 | 50.6 | 10.3 |
| poly(VN-fa) | ![]() | 189 | 313 | 64.7 | 62.0 | 11.1 |
| poly(V-fa) | ![]() | — | 293 | 56.1 | 132.2 | 6.9 |
表1 poly(HN-fa)、poly(VN-fa)和一些结构相似苯并嗪树脂的热性能和阻燃性能
Table 1 Thermal stability and heat release properties of poly(HN-fa), poly(VN-fa) and typical benzoxazine resins
| 样品 | 单体结构式 | Tg/℃ | Tdi/℃ | YC/% | HRC/(J·g-1·K-1) | THR/(kJ·g-1) |
|---|---|---|---|---|---|---|
| poly(PH-a) | ![]() | 133 | 292 | 38 | 118 | 13.5 |
| poly(GU-fa) | ![]() | — | 320 | 56 | 70.6 | 6.5 |
| poly(HN-fa) | ![]() | 247 | 338 | 63.2 | 50.6 | 10.3 |
| poly(VN-fa) | ![]() | 189 | 313 | 64.7 | 62.0 | 11.1 |
| poly(V-fa) | ![]() | — | 293 | 56.1 | 132.2 | 6.9 |
| [1] | Zhang C Q, Xue J Q, Yang X Y, et al. From plant phenols to novel bio-based polymers[J]. Progress in Polymer Science, 2022, 125: 101473. |
| [2] | Adjaoud A, Marcolini B, Dieden R, et al. Deciphering the self-catalytic mechanisms of polymerization and transesterification in polybenzoxazine vitrimers[J]. Journal of the American Chemical Society, 2024, 146(19): 13367-13376. |
| [3] | Zhang S J, Yi J J, Chen J M, et al. Weldable, reprocessable, and water-resistant polybenzoxazine vitrimer crosslinked by dynamic imine bonds[J]. ChemSusChem, 2024, 17(14): e202301708. |
| [4] | Yang M Y, Wang T C, Tian Y Z, et al. Nature's empowerment: unraveling superior performance and green degradation closed-loop in self-curing fully bio-based benzoxazines[J]. Green Chemistry, 2024, 26(8): 4771-4784. |
| [5] | Li N, Yang S F, Zhang K. Thiophene-rich benzoxazines with an amide moiety: integration of structural and hydrogen bonding influence on the polymerization mechanism by experimental and computational studies[J]. Macromolecules, 2023, 56(17): 6667-6678. |
| [6] | Zhou X, Shen M G, Fu F, et al. High strength, self-healing and hydrophobic fully bio-based polybenzoxazine reinforced pine oleoresin-based vitrimer and its application in carbon fiber reinforced polymers[J]. Chemical Engineering Journal, 2024, 484: 149585. |
| [7] | Yadav S, Amarnath N, et al. Advancing renewable amines: furan-derived polybenzoxazines[J]. ACS Applied Polymer Materials, 2024, 6(24): 15281-15292. |
| [8] | Seychal G, Van Renterghem L, Ocando C, et al. Towards sustainable reprocessable structural composites: Benzoxazines as biobased matrices for natural fibers[J]. Composites Part B: Engineering, 2024, 272: 111201. |
| [9] | Madesh P, Krishnasamy B, Arumugam H, et al. Bio-based benzoxazine composites derived from magnolol: promising solution for sustainable alternatives for dielectric and superhydrophobic applications[J]. Polymer Composites, 2024, 45(8): 7137-7149. |
| [10] | Yang R, Li N, Evans C J, et al. Phosphaphenanthrene-functionalized benzoxazines bearing intramolecularly hydrogen-bonded phenolic hydroxyl: synthesis, structural characterization, polymerization mechanism, and property investigation[J]. Macromolecules, 2023, 56(4): 1311-1323. |
| [11] | Mohamed Mydeen K, Krishnasamy B, Arumugam H, et al. Sustainable strategies for fully biobased polybenzoxazine composites from trifunctional thymol and biocarbons: advancements in high-dielectric and antibacterial corrosion implementations[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(6): 2225-2240. |
| [12] | Mohamed Mydeen K, Arumugam H, Krishnasamy B, et al. Nonylphenol-based polybenzoxazine composites: hydrophobic coating, ultra-low-k and anticorrosion applications[J]. Journal of Materials Science, 2023, 58(25): 10340-10358. |
| [13] | Lochab B, Monisha M, Amarnath N, et al. Review on the accelerated and low-temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers[J]. Polymers, 2021, 13(8): 1260. |
| [14] | Zhang K, Yu X Y, Wang Y T, et al. Thermally activated structural changes of a norbornene-benzoxazine-phthalonitrile thermosetting system: simple synthesis, self-catalyzed polymerization, and outstanding flame retardancy[J]. ACS Applied Polymer Materials, 2019, 1(10): 2713-2722. |
| [15] | Ren D X, Xu M Z, Chen S J, et al. Curing reaction and properties of a kind of fluorinated phthalonitrile containing benzoxazine[J]. European Polymer Journal, 2021, 159: 110715. |
| [16] | Wang T, Shi C Y, Qadeer Dayo A, et al. Synthesis and properties of novel self-catalytic phthalonitrile monomers with aliphatic chain and their copolymerization with multi-functional fluorene-based benzoxazine monomers[J]. European Polymer Journal, 2021, 161: 110862. |
| [17] | Chen Y P, Dayo A Q, Zhang H Y, et al. Synthesis of cardanol-based phthalonitrile monomer and its copolymerization with phenol–aniline-based benzoxazine[J]. Journal of Applied Polymer Science, 2019, 136(20): 47505. |
| [18] | Dayo A Q, Wang A R, Derradji M, et al. Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer: curing behaviour, thermal, and mechanical properties[J]. Reactive and Functional Polymers, 2018, 131: 156-163. |
| [19] | Bonjour O, Nederstedt H, Arcos-Hernandez M V, et al. Lignin-inspired polymers with high glass transition temperature and solvent resistance from 4-hydroxybenzonitrile, vanillonitrile, and syringonitrile methacrylates[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(50): 16874-16880. |
| [20] | 郑杰元, 张先伟, 万金涛, 等. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
| Zheng J Y, Zhang X W, Wan J T, et al. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin[J]. CIESC Journal, 2023, 74(2): 924-932. | |
| [21] | Andreu R, Reina J A, Ronda J C. Studies on the thermal polymerization of substituted benzoxazine monomers: electronic effects[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(10): 3353-3366. |
| [22] | Sini N K, Bijwe J, Varma I K. Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(1): 7-11. |
| [23] | Guan L J, Guo Z Q, Zhou Q, et al. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis[J]. Nature Communications, 2023, 14(1): 8114. |
| [24] | Xu M Z, Ren D X, Chen L, et al. Understanding of the polymerization mechanism of the phthalonitrile-based resins containing benzoxazine and their thermal stability[J]. Polymer, 2018, 143: 28-39. |
| [25] | Zhang S, Li Q S, Ye J J, et al. Probing the copolymerization of alkynyl and cyano groups using monocyclic benzoxazine as model compound[J]. Polymer, 2022, 252: 124932. |
| [26] | Lu Y, Yang Y, Wang J Q, et al. Development of intrinsically flame-retardant bio-thermosets with further enhanced thermal stability through a photo-thermal dual polymerization strategy[J]. Polymer Degradation and Stability, 2024, 229: 110948. |
| [27] | Lu Y, Liu J M, Zhao W Q, et al. Bio-benzoxazine structural design strategy toward highly thermally stable and intrinsically flame-retardant thermosets[J]. Chemical Engineering Journal, 2023, 457: 141232. |
| [28] | Muraoka M, Goto M, Minami M, et al. Ethynylene-linked multifunctional benzoxazines: the effect of the ethynylene group and packing on thermal behavior[J]. Polymer Chemistry, 2022, 13(39): 5590-5596. |
| [29] | 胡月, 马守骏, 蹇锡高, 等. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882. |
| Hu Y, Ma S J, Jian X G. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile)[J]. CIESC Journal, 2023, 74(2): 871-882. | |
| [30] | Yang R, Han M C, Hao B R, et al. Biobased high-performance tri-furan functional bis-benzoxazine resin derived from renewable guaiacol, furfural and furfurylamine[J]. European Polymer Journal, 2020, 131: 109706. |
| [31] | Lu Y, Yu X Y, Evans C J, et al. Elucidating the role of acetylene in ortho-phthalimide functional benzoxazines: design, synthesis, and structure–property investigations[J]. Polymer Chemistry, 2021, 12(35): 5059-5068. |
| [32] | van Krevelen D W. Some basic aspects of flame resistance of polymeric materials[J]. Polymer, 1975, 16(8): 615-620. |
| [33] | Spontón M, Ronda J C, Galià M, et al. Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A[J]. Polymer Degradation and Stability, 2008, 93(12): 2158-2165. |
| [34] | Chen M J, Wang X, Tao M C, et al. Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams[J]. Polymer Degradation and Stability, 2018, 154: 312-322. |
| [35] | Bourbigot S, Flambard X. Heat resistance and flammability of high performance fibres: a review[J]. Fire and Materials, 2002, 26(4/5): 155-168. |
| [36] | Walters R N, Lyon R E. Molar group contributions to polymer flammability[J]. Journal of Applied Polymer Science, 2003, 87(3): 548-563. |
| [1] | 张圣美, 李明, 张莹, 易茜, 杨依婷, 刘雅莉. 乳化剂和温度对相变微胶囊性能的影响分析[J]. 化工学报, 2025, 76(S1): 444-452. |
| [2] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [3] | 徐佳琪, 张文君, 余燕萍, 苏宝根, 任其龙, 杨启炜. 热等离子体重整炼厂气制合成气过程数值模拟与实验研究[J]. 化工学报, 2025, 76(9): 4462-4473. |
| [4] | 黄小河, 张守玉. Ca种类对准东煤灰烧结特性影响[J]. 化工学报, 2025, 76(9): 4913-4921. |
| [5] | 李泽权, 蔡天宇, 刘家骏, 陈奇志, 肖沛文, 徐小飞, 赵双良. 木质素基絮凝剂的合成与应用[J]. 化工学报, 2025, 76(9): 4709-4722. |
| [6] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [7] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [8] | 巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041. |
| [9] | 叶鑫煌, 薛嘉豪, 赵玉来. 可聚型Gemini表面活性剂的制备、表征及其稳定高内相乳液的研究[J]. 化工学报, 2025, 76(8): 4331-4340. |
| [10] | 彭梦圆, 李家明, 沙敏, 张丁. 季铵盐氟碳表面活性剂复配体系的性能研究[J]. 化工学报, 2025, 76(8): 4177-4184. |
| [11] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| [12] | 张晓晨, 鲁中山, 郭腾, 桂恒, 宋红兵, 肖盟. 一株端羟基聚丁二烯降解菌的筛选及降解机理研究[J]. 化工学报, 2025, 76(8): 4205-4216. |
| [13] | 赵美, 甘雨欣, 赵绍磊, 杨令, 王亭杰. 硅橡胶用纳米二氧化硅表面有机修饰及补强机理研究进展[J]. 化工学报, 2025, 76(7): 3125-3136. |
| [14] | 郭铮铮, 赵一丹, 王辅强, 裴璐, 靳彦岭, 任芳, 任鹏刚. 异质结构MoS2/RGO/NiFe2O4复合材料的构筑及电磁波吸收性能研究[J]. 化工学报, 2025, 76(7): 3719-3732. |
| [15] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号