化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 114-122.DOI: 10.11949/0438-1157.20241296
• 流体力学与传递现象 • 上一篇
沙鑫权1(
), 胡然1,2, 丁磊1(
), 蒋珍华1,2, 吴亦农1,2
收稿日期:2024-11-13
修回日期:2024-11-25
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
丁磊
作者简介:沙鑫权(1994—),男,硕士研究生,助理工程师,18817656275@163.com
基金资助:
Xinquan SHA1(
), Ran HU1,2, Lei DING1(
), Zhenhua JIANG1,2, Yinong WU1,2
Received:2024-11-13
Revised:2024-11-25
Online:2025-06-25
Published:2025-06-26
Contact:
Lei DING
摘要:
在宇宙探索中,可靠的低温环境对空间探测器至关重要。有阀线性压缩机是Joule-Thomson(JT)节流制冷机的驱动部件,其结构及性能直接影响制冷机制冷性能及效率。基于课题组研究基础,本文优化压缩机电机及气阀,研制了一款单机两级有阀线性压缩机原理样机并开展相关研究测试。实验结果表明,随着充气压力从0.1 MPa增加至0.3 MPa时,质量流量增长337%,压比仅降低19.7%,电机效率与等熵效率在0.15 MPa时达到最大;随着活塞行程从2 mm增加至10 mm时,质量流量增长了10.6倍,压比增长了9.6倍,电机效率在4 mm时达到最大,而等熵效率与行程呈线性增长趋势。该压缩机最大输出性能为16 mg/s(19.7压比),能覆盖两台单级压缩机的输出能力。该原理样机的研制,为后续空间节流制冷机的轻量高效需求奠定了基础。
中图分类号:
沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122.
Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications[J]. CIESC Journal, 2025, 76(S1): 114-122.
| 参数 | 值 |
|---|---|
| 整机质量G/kg | 9.5 |
| 活塞直径D1/mm | 32 |
| 活塞直径D2/mm | 16 |
| 运行频率f/Hz | 30~60 |
| 比推力Fmax | 27 |
表1 单机两级有阀线性压缩机参数
Table 1 Parameters of single two-stage linear compressor
| 参数 | 值 |
|---|---|
| 整机质量G/kg | 9.5 |
| 活塞直径D1/mm | 32 |
| 活塞直径D2/mm | 16 |
| 运行频率f/Hz | 30~60 |
| 比推力Fmax | 27 |
| 工作过程 | 活塞位移状态 | 低压级状态 | 高压级状态 |
|---|---|---|---|
| 1 | ![]() | 压缩(1→2) | 膨胀(1′→2′) |
| 2 | ![]() | 压缩(1→2) | 吸气(2′→3′) |
| 3 | ![]() | 排气(2→3) | 吸气(2′→3′) |
| 4 | ![]() | 膨胀(3→4) | 压缩(3′→4′) |
| 5 | ![]() | 吸气(4→1) | 压缩(3′→4′) |
| 6 | ![]() | 吸气(4→1) | 排气(4′→1′) |
表2 单机两级有阀线性压缩机工作过程
Table 2 Working process of two-stage valved linear compressor
| 工作过程 | 活塞位移状态 | 低压级状态 | 高压级状态 |
|---|---|---|---|
| 1 | ![]() | 压缩(1→2) | 膨胀(1′→2′) |
| 2 | ![]() | 压缩(1→2) | 吸气(2′→3′) |
| 3 | ![]() | 排气(2→3) | 吸气(2′→3′) |
| 4 | ![]() | 膨胀(3→4) | 压缩(3′→4′) |
| 5 | ![]() | 吸气(4→1) | 压缩(3′→4′) |
| 6 | ![]() | 吸气(4→1) | 排气(4′→1′) |
| 阀片 | 阀片刚度/(N/m) | 最大应力/MPa |
|---|---|---|
| 低压进气阀片 | 93.5 | 79.4 |
| 低压排气阀片 | 254 | 198.9 |
| 高压进气阀片 | 75 | 73.6 |
| 高压排气阀片 | 107 | 97.1 |
表3 阀片刚度和最大应力
Table 3 Stiffness and maximum stress of flat valve
| 阀片 | 阀片刚度/(N/m) | 最大应力/MPa |
|---|---|---|
| 低压进气阀片 | 93.5 | 79.4 |
| 低压排气阀片 | 254 | 198.9 |
| 高压进气阀片 | 75 | 73.6 |
| 高压排气阀片 | 107 | 97.1 |
| 阀片 | 一阶固有频率/Hz |
|---|---|
| 低压吸气阀片 | 263 |
| 低压排气阀片 | 522 |
| 高压吸气阀片 | 280 |
| 高压排气阀片 | 357 |
表4 阀片的一阶固有频率
Table 4 First-order natural frequency of flat valve
| 阀片 | 一阶固有频率/Hz |
|---|---|
| 低压吸气阀片 | 263 |
| 低压排气阀片 | 522 |
| 高压吸气阀片 | 280 |
| 高压排气阀片 | 357 |
| 传感器类型 | 量程 | 精度 |
|---|---|---|
| 质量流量传感器 | 0~30 mg/s 0~5 mg/s | ±0.5% Rd plus ± 0.1% FS |
| 静压传感器 | 0~0.6 MPa | ±0.1% FS |
| 激光位移传感器 | -18~18 mm | ±0.1 μm |
表5 传感器主要性能参数
Table 5 Main performance parameters of sensors
| 传感器类型 | 量程 | 精度 |
|---|---|---|
| 质量流量传感器 | 0~30 mg/s 0~5 mg/s | ±0.5% Rd plus ± 0.1% FS |
| 静压传感器 | 0~0.6 MPa | ±0.1% FS |
| 激光位移传感器 | -18~18 mm | ±0.1 μm |
| 1 | Xu L, Zou Y L, Jia Y Z. China's planning for deep space exploration and lunar exploration before 2030[J]. Chinese Journal of Space Science, 2018, 38(5): 591-592. |
| 2 | 刘建峰, 沈飞. 制冷技术在空间红外光学系统中的应用及其发展趋势[J]. 红外, 2011, 32(1): 16-22. |
| Liu J F, Shen F. Application of cooling technology in space infrared optical systems and its development trend[J]. Infrared, 2011, 32(1): 16-22. | |
| 3 | Holmes W, Chui T, Johnson D, et al. Cooling systems for far-infrared telescopes and instruments[R]. Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, 2010 (13): 13-22. |
| 4 | 甘智华, 王博, 刘东立, 等. 空间液氦温区机械式制冷技术发展现状及趋势[J]. 浙江大学学报(工学版), 2012, 46(12): 2160-2177. |
| Gan Z H, Wang B, Liu D L, et al. Status and development trends of space mechanical refrigeration system at liquid helium temperature[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(12): 2160-2177. | |
| 5 | Duband L. Space cryocooler developments[J]. Physics Procedia, 2015, 67: 1-10. |
| 6 | 汪伟伟. 空间用有阀线性压缩机设计与实验研究[D]. 杭州: 浙江大学, 2014. |
| Wang W W. Design and experimental study on a valved linear compressor for space application[D]. Hangzhou: Zhejiang University, 2014. | |
| 7 | Orlowska A H, Bradshaw T W, Hieatt J. Development status of a 2.5 K—4 K closed-cycle cooler suitable for space use[M]//Cryocoolers 8. Boston, MA: Springer US, 1995: 517-524. |
| 8 | Jones B G, Ramsay D W. Qualification of a 4 K mechanical cooler for space applications[M]//Cryocoolers 8. Boston, MA: Springer US, 1995: 525-535. |
| 9 | Narasaki K, Tsunematsu S, Yajima S, et al. Development of cryogenic system for SMILES[C]//AIP Conference Proceedings. Anchorage, Alaska (USA): AIP, 2004: 1785-1796. |
| 10 | Sugita H, Sato Y, Nakagawa T, et al. Cryogenic system for the infrared space telescope SPICA[C]//Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter. Marseille, France: SPIE, 2008: 919-927. |
| 11 | Shinozak K, Sugita H, Sato Y, et al. Developments of 1—4 K class space mechanical coolers for new generation satellite missions in JAXA[C]//Cryocooler. Atlanta, USA: ICC Press, 2011: 1-8. |
| 12 | Sato Y, Shinozaki K, Sugita H, et al. Development of mechanical cryocoolers for the cooling system of the Soft X-ray Spectrometer onboard Astro-H[J]. Cryogenics, 2012, 52(4/6): 158-164. |
| 13 | Narasaki K, Tsunematsu S, Ootsuka K, et al. Development of 1 K-class mechanical cooler for SPICA[J]. Cryogenics, 2004, 44(6-8): 375-381. |
| 14 | Raab J, Tward E. Northrop Grumman Aerospace Systems cryocooler overview[J]. Cryogenics, 2010, 50(9): 572-581. |
| 15 | Quan J, Zhou Z J, Liu Y J, et al. A miniature liquid helium temperature JT cryocooler for space application[J]. Science China Technological Sciences, 2014, 57(11): 2236-2240. |
| 16 | You L X, Quan J, Wang Y, et al. Superconducting nanowire single photon detection system for space applications[J]. Optics Express, 2018, 26(3): 2965-2971. |
| 17 | 马跃学, 王娟, 李建国, 等. 空间有阀无油线性压缩机实验优化[J]. 工程热物理学报, 2019, 40(8): 1729-1734. |
| Ma Y X, Wang J, Li J G, et al. Experimental optimization of space oil-free J-T compressors[J]. Journal of Engineering Thermophysics, 2019, 40(8): 1729-1734. | |
| 18 | Liu S S, Sha X Q, Ding L, et al. Investigation of the frequency and stroke characteristics of two-stage valved linear compressor in a 4 K JT cryocooler[J]. Applied Thermal Engineering, 2020, 176: 115432. |
| 19 | 沙鑫权, 李瑛, 刘少帅, 等. 基于PV图的氦工质有阀线性压缩机实际循环[J]. 轻工机械, 2020, 38(1): 41-45. |
| Sha X Q, Li Y, Liu S S, et al. Actual cycle of helium valved linear compressor based on PV diagram[J]. Light Industry Machinery, 2020, 38(1): 41-45. | |
| 20 | Sha X Q, Ding L, Huang Q, et al. Performance testing of helium valved linear compressor system capable of providing compression ratio over 200[M]//Advanced Topics in Science and Technology in China. Singapore: Springer Nature Singapore, 2023: 664-671. |
| 21 | 陈志超, 刘少帅, 蒋珍华, 等. 空间用液氦温区节流制冷机最小总功耗参数匹配策略研究[J]. 真空与低温, 2022, 28(3): 259-265. |
| Chen Z C, Liu S S, Jiang Z H, et al. Research on the matching strategy of minimum power consumption for space application liquid helium temperature JT cryocooler[J]. Vacuum and Cryogenics, 2022, 28(3): 259-265. | |
| 22 | 褚晋简, 刘少帅, 王鹏, 等. 用于空间BIB探测器的0.3 W@4.2 K大冷量轻量化低温系统[J]. 红外与毫米波学报, 2023, 42(6): 885-895. |
| Chu J J, Liu S S, Wang P, et al. A 0.3 W@4.2 K high-capacity lightweight cryogenic system for space BIB detection[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 885-895. | |
| 23 | Biao W, Ji G L, Wu Y N. Drive and control system for a Stirling cryocooler[M]//Cryocoolers 10. Boston, MA: Springer US, 2002: 791-793. |
| 24 | Liang K, Stone R, Hancock W, et al. Comparison between a crank-drive reciprocating compressor and a novel oil-free linear compressor[J]. International Journal of Refrigeration, 2014, 45: 25-34. |
| 25 | 刘莉, 张华, 丁磊, 等. 有阀线性压缩机输出特性关键影响因素研究[J]. 制冷技术, 2019, 39(1): 34-38. |
| Liu L, Zhang H, Ding L, et al. Study on key influencing factors of output characteristics of a valved linear compressor[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 34-38. | |
| 26 | 赵长安. 控制系统设计手册-上册[M]. 北京: 国防工业出版社, 1991: 160. |
| Zhao C A. Control System Design Manual-Volume I[M]. Beijing: National Defense Industry Press, 1991: 160. | |
| 27 | 李子成, 崔晓钰, 丁磊, 等. 有阀线性压缩机吸气阀片位移特性的可视化实验[J]. 制冷学报, 2023, 44(5): 19-24, 69. |
| Li Z C, Cui X Y, Ding L, et al. Visualization experiment of displacement characteristics of suction valve in a valved linear compressor[J]. Journal of Refrigeration, 2023, 44(5): 19-24, 69. | |
| 28 | 林梅,孙嗣莹. 活塞式压缩机原理[M]. 北京: 机械工业出版社, 1987: 167. |
| Lin M, Sun S Y. Principle of Piston Compressor[M]. Beijing: China Machine Press, 1987: 167. | |
| 29 | Liang K, Stone R, Dadd M, et al. Piston position sensing and control in a linear compressor using a search coil[J]. International Journal of Refrigeration, 2016, 66: 32-40. |
| 30 | Ding L, Zhang H, Sha X Q, et al. Study on the establishing-process of piston offset in the helium valved linear compressor under different operating parameters[J]. International Journal of Refrigeration, 2022, 133: 80-89. |
| 31 | Huang Q, Ding L, Sha X Q, et al. Experimental investigation on piston offset and performance of helium valved linear compressor with an external gas bypass[J]. International Journal of Refrigeration, 2023, 145: 417-424. |
| [1] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [2] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [3] | 何正磊, 胡丁丁. 基于多智能体强化学习的造纸污水多目标优化[J]. 化工学报, 2025, 76(4): 1617-1634. |
| [4] | 许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558. |
| [5] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [6] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [7] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [8] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [9] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [10] | 赵丽文, 刘桂莲. 基于系统集成的复杂催化反应系统性能强化及参数优化[J]. 化工学报, 2025, 76(3): 1111-1119. |
| [11] | 孙芹, 周国庆, 翟万领, 高山, 罗倩倩, 屈健. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| [12] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [13] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| [14] | 李新颖, 苏畅, 郭超, 庞建, 王超, 李春. CRISPR技术在链霉菌细胞工厂中的应用和优化[J]. 化工学报, 2025, 76(3): 922-932. |
| [15] | 张静, 元跃, 刘艳梅, 王智文, 陈涛. 生物法制备衣康酸研究进展[J]. 化工学报, 2025, 76(3): 909-921. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号