化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1898-1908.DOI: 10.11949/0438-1157.20241091
• 过程安全 • 上一篇
霍军良1(
), 唐治国1, 邱宗君1, 冯玉华1, 蒋旭1, 王乐怡1, 杨宇1, 乔帆帆2, 赫一凡2, 喻健良2(
)
收稿日期:2024-09-29
修回日期:2024-12-23
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
喻健良
作者简介:霍军良(1988—),男,工程师,huojl-xj@cnpc.com.cn
Junliang HUO1(
), Zhiguo TANG1, Zongjun QIU1, Yuhua FENG1, Xu JIANG1, Leyi WANG1, Yu YANG1, Fanfan QIAO2, Yifan HE2, Jianliang YU2(
)
Received:2024-09-29
Revised:2024-12-23
Online:2025-04-25
Published:2025-05-12
Contact:
Jianliang YU
摘要:
CO2输送管道作为碳捕集、利用与封存(CCUS)技术的关键环节,当遇到泄漏、腐蚀等损伤时需要先对管道放空来开展后续修复工作。为确保放空操作的安全性,需对放空过程中的干冰冻堵隐患与冻阀危险进行评估。故基于工业规模CO2管道节流实验装置,开展了2组不同节流阀开度的超临界相放空实验。结果表明,直接放空过程中,放空后期主管道的注入端出现干冰区(长度小于149.2 m,高度小于58.3 mm),并且生成的干冰颗粒存在迁移现象。放空管最低温度降至-23.2℃,零下低温持续600.4 s。节流放空虽能提升注入端干冰区最低温度,但在泄放端会出现干冰堆积(堆积长度小于10.4 m,高度小于116.5 mm)。节流作用可以降低放空管充压水平(降压幅度为40%),但同时也会降低放空管的温降幅度(最低温度降至-35.4℃)从而增加冻阀隐患。
中图分类号:
霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908.
Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect[J]. CIESC Journal, 2025, 76(4): 1898-1908.
| 截面序列 | 长度/m |
|---|---|
| 1 | 237.4 |
| 2 | 162.0 |
| 3 | 108.8 |
| 4 | 54.2 |
| 5 | 10.4 |
| 6 | 7.4 |
| 7 | 0.7 |
表1 主管道截面距放空端长度
Table 1 Length of main pipe section from release end
| 截面序列 | 长度/m |
|---|---|
| 1 | 237.4 |
| 2 | 162.0 |
| 3 | 108.8 |
| 4 | 54.2 |
| 5 | 10.4 |
| 6 | 7.4 |
| 7 | 0.7 |
| 截面序列 | 高度/m |
|---|---|
| 1 | 0.35 |
| 2 | 0.80 |
| 3 | 2.65 |
| 4 | 3.25 |
| 5 | 4.95 |
表2 放空管截面与主管道轴线高度
Table 2 Height of vent pipe cross-section in axis with the main pipe
| 截面序列 | 高度/m |
|---|---|
| 1 | 0.35 |
| 2 | 0.80 |
| 3 | 2.65 |
| 4 | 3.25 |
| 5 | 4.95 |
| 实验组别 | 初始温度/℃ | 初始压力/MPa | 节流阀门 开度/% | 管内介质 相态 |
|---|---|---|---|---|
| Test1 | 30 | 8 | 100 | 超临界 |
| Test2 | 30 | 8 | 60 | 超临界 |
表3 放空实验参数
Table 3 Parameters of release experiment
| 实验组别 | 初始温度/℃ | 初始压力/MPa | 节流阀门 开度/% | 管内介质 相态 |
|---|---|---|---|---|
| Test1 | 30 | 8 | 100 | 超临界 |
| Test2 | 30 | 8 | 60 | 超临界 |
| 1 | 桑博, 徐祥功, 高贵东, 等. 温室气体排放纳入环评管理的探索与实践[J]. 中国资源综合利用, 2024, 42(8): 222-225. |
| Sang B, Xu X G, Gao G D, et al. Exploration and practice of incorporating greenhouse gas emissions into environmental impact assessment management[J]. China Resources Comprehensive Utilization, 2024, 42(8): 222-225. | |
| 2 | 刘承琦, 宋明丹, 塔林葛娃, 等. 青海省农业源非CO2温室气体排放特征及减排策略[J]. 应用与环境生物学报, 2024, 30(6): 1255-1262. |
| Liu C Q, Song M D, Talin G W, et al. Characteristics of total non-CO2 greenhouse gas emissions from agricultural sources and emission reduction strategies in Qinghai province, China[J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(6): 1255-1262. | |
| 3 | Ji M C, Liao H Q, Lu Z B, et al. Analyzing the variation of greenhouse gas emissions from typical municipal wastewater treatment plants in Beijing during 2007—2021[J]. Environmental Pollution, 2024, 360: 124655 |
| 4 | Ochi A, Saidi A. Impact of governance quality, population and economic growth on greenhouse gas emissions: an analysis based on a panel VAR model[J]. Journal of Environmental Management, 2024, 370: 122613. |
| 5 | Chen Y, Ren S W, Ma Y J. The impact of eco-preneurship and green technology on greenhouse gas emissions — an analysis of East Asian economies[J]. Heliyon, 2024, 10(8): e29083. |
| 6 | Liang B, Chen C, Jia C S, et al. Carbon capture, utilization and storage (CCUS) in oil and gas reservoirs in China: status, opportunities and challenges[J]. Fuel, 2024, 375: 132353. |
| 7 | Truong T H, Lin B W, Lo C H, et al. Possible pathways for low carbon transitions: investigating the efforts of oil companies in CCUS technologies[J]. Energy Strategy Reviews, 2024, 54: 101421. |
| 8 | 王林星. CCUS技术在油田提高采收率应用及展望[J]. 石油石化节能与计量, 2024, 14(9): 110-114. |
| Wang L X. Application and prospect of CCUS technology in improving oil recovery in oilfields[J]. Energy Conservation and Measurement in Petroleum & Petrochemical Industry, 2024, 14(9): 110-114. | |
| 9 | Sun B, Fan B Y, Wu C, et al. Exploring incentive mechanisms for the CCUS project in China's coal-fired power plants: an option-game approach[J]. Energy, 2024, 288: 129694. |
| 10 | Hu Y W, Chen L, Cao Z G, et al. Investigation of scaling-down experiments for accidental CO2 leakage dispersion risks in constant-pressure transportation pipelines within the CCUS process[J]. Process Safety and Environmental Protection, 2024, 190: 746-759. |
| 11 | Zhou Y, Xie F, Wang D, et al. Carbon capture, utilization and storage (CCUS) pipeline steel corrosion failure analysis: a review[J]. Engineering Failure Analysis, 2024, 155: 107745. |
| 12 | Wang W H, Guang Y, Liu W, et al. Experimental investigation of stress corrosion on supercritical CO2 transportation pipelines against leakage for CCUS applications[J]. Energy Reports, 2023, 9: 266-276. |
| 13 | Chen L, Hu Y W, Liu Z X, et al. Experimental research on the fracture and arrest process of supercritical CO2 pipelines[J]. International Journal of Pressure Vessels and Piping, 2024, 212: 105314. |
| 14 | Zhang D H, Wang R X, Ouyang X, et al. Experimental study of the full-scale burst failure behavior of carbon dioxide steel pipeline[J]. Journal of Pipeline Science and Engineering, 2025, 5(1): 100221. |
| 15 | Wang J Q, Yan L G, Xiao C H, et al. Experimental study of near-field characteristics of high-pressure CO2 pipeline leakage[J]. International Journal of Greenhouse Gas Control, 2024, 137: 104205. |
| 16 | Mocellin P, Vianello C, Maschio G. Hazard investigation of dry–ice bank induced risks related to rapid depressurization of CCS pipelines. Analysis of different numerical modelling approaches[J]. International Journal of Greenhouse Gas Control, 2016, 55: 82-96. |
| 17 | Yu S, Yan X Q, He Y F, et al. Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage[J]. Energy, 2024, 288: 129674. |
| 18 | Yu S, Yan X Q, He Y F, et al. Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: experiments and mechanism analysis[J]. Energy, 2024, 296: 131180. |
| 19 | Barrie J, Brown K, Hatcher P R, et al. Carbon dioxide pipelines: a preliminary review of design and risks[J]. Greenhouse Gas Control Technologies 7, 2005, 1: 315-320. |
| 20 | 杨腾, 李玉星, 王海锋, 等. 超临界CO2管道放空特性实验研究[J]. 中国安全生产科学技术, 2023, 19(S2): 101-107. |
| Yang T, Li Y X, Wang H F,et al. Experimental study on venting characteristics of supercritical CO2 pipeline[J]. Journal of Safety Science and Technology, 2023, 19(S2): 101-107. | |
| 21 | 胡其会, 滕霖, 王财林, 等. CO2管内节流实验装置设计及实验研究[J]. 实验技术与管理, 2018, 35(5): 84-88. |
| Hu Q H, Teng L, Wang C L, et al. Research on design and experiment of CO2 in-pipe throttling experimental device[J]. Experimental Technology and Management, 2018, 35(5): 84-88. | |
| 22 | 柳歆, 王海锋, 杨腾, 等. 高压CO2管道放空及安全泄放的数值模拟[J]. 油气储运, 2024, 43(4): 387-394. |
| Liu X, Wang H F, Yang T, et al. Numerical simulation of high-pressure CO2 pipeline venting and safe release[J]. Oil & Gas Storage and Transportation, 2024, 43(4): 387-394. | |
| 23 | Clausen S, Oosterkamp A, Strøm K L. Depressurization of a 50 km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. |
| 24 | Yamasaki H, Yamaguchi H, Hattori K, et al. Experimental observation of CO2 dry-ice behavior in an evaporator/sublimator[J]. Energy Procedia, 2017, 143: 375-380. |
| 25 | Yu S, Yan X Q, He Y F, et al. Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes[J]. Energy, 2024, 308: 132967. |
| 26 | Yan X Q, Guo X L, Yu J L, et al. Flow characteristics and dispersion during the vertical anthropogenic venting of supercritical CO2 from an industrial scale pipeline[J]. Energy Procedia, 2018, 154: 66-72. |
| 27 | Guo X L, Chen S Y, Yan X Q, et al. Flow characteristics and dispersion during the leakage of high pressure CO2 from an industrial scale pipeline[J]. International Journal of Greenhouse Gas Control, 2018, 73: 70-78. |
| 28 | Guo X L, Xu S Q, Chen G J, et al. Fracture criterion and control plan on CO2 pipelines: Theory analysis and full-bore rupture (FBR) experimental study[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104394. |
| 29 | Guo X L, Yan X Q, Yu J L, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197. |
| 30 | Cao Q, Yan X Q, Liu S R, et al. Temperature and phase evolution and density distribution in cross section and sound evolution during the release of dense CO2 from a large-scale pipeline[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103011. |
| [1] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [2] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [3] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [4] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [5] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [6] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [7] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [8] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [9] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [10] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
| [11] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [12] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| [13] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
| [14] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| [15] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号