化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5372-5389.DOI: 10.11949/0438-1157.20241528
收稿日期:2024-12-30
修回日期:2025-08-18
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
高蓬辉
作者简介:焉富春(1996—),男,博士研究生, yanfuchun205@163.com
基金资助:
Fuchun YAN1(
), Penghui GAO1,2(
), Kezheng CHEN1, Bo CHENG1
Received:2024-12-30
Revised:2025-08-18
Online:2025-10-25
Published:2025-11-25
Contact:
Penghui GAO
摘要:
盐溶液冰浆作为良好的储冷介质,广泛用于空调制冷、生物医药等领域。本研究将流场与相场法耦合,利用LBM方法分析研究过冷盐溶液在静止和流动条件下的枝晶生长与分布特性,并采用偏最小二乘法(partial least squares,PLS)分析了影响溶液过冷结晶的影响因素的权重。结果表明,当流速从0.1 m/s增加到0.5 m/s时,上游的枝晶生长率增长27%,而下游的枝晶生长率增长了12%;受到流速的影响,各向异性强度对枝晶形状的影响减弱;随着浓度的增加,枝晶生长速率变小。过冷度和热通量是影响冰晶生长的重要参数,随着过冷度、热通量的增加,盐溶液过冷结晶越容易发生,枝晶生长更加明显。
中图分类号:
焉富春, 高蓬辉, 陈科拯, 程博. 过冷盐溶液流动过程中结晶生长与分布特性研究[J]. 化工学报, 2025, 76(10): 5372-5389.
Fuchun YAN, Penghui GAO, Kezheng CHEN, Bo CHENG. Study on crystal growth and distribution characteristics of supercooled salt solution during flow[J]. CIESC Journal, 2025, 76(10): 5372-5389.
| 来源 | NaCl 溶液浓度/% | 潜热值/(J/g) |
|---|---|---|
| 本研究 | 3.5 | 286.45 |
| 5.0 | 268.46 | |
| 8.0 | 231.19 | |
| 文献[ | 1.75 | 315 |
| 17.5 | 185 | |
| 文献[ | 3.88 | 292 |
| 7.70 | 279 | |
| 文献[ | 3.39 | 292.5 |
表1 不同浓度NaCl溶液过冷结晶潜热的比较
Table 1 Comparison of subcooling crystallization latent heat of NaCl solutions of different concentrations
| 来源 | NaCl 溶液浓度/% | 潜热值/(J/g) |
|---|---|---|
| 本研究 | 3.5 | 286.45 |
| 5.0 | 268.46 | |
| 8.0 | 231.19 | |
| 文献[ | 1.75 | 315 |
| 17.5 | 185 | |
| 文献[ | 3.88 | 292 |
| 7.70 | 279 | |
| 文献[ | 3.39 | 292.5 |
| Physical parameters | Water-NaCl binary solutions |
|---|---|
| interface energy σ/(J/m2) | 0.0758 |
| latent heat L/(J/g) | 335 |
| equilibrium constant | 0.075 |
| salinity mass concentration c/(g/kg) | 0.03 |
| mesh number in x axis direction | 1500 |
| mesh number in y axis direction | 1500 |
| unit mesh size/μm | 0.07 |
| time step | 3000 |
| mesh size of initial crystal nucleus radius | 10 |
| initial supercooling degree of temperature ΔT/K | 15 |
表2 仿真中的物理参数和初始条件
Table 2 Physical parameters and initial condition in simulation
| Physical parameters | Water-NaCl binary solutions |
|---|---|
| interface energy σ/(J/m2) | 0.0758 |
| latent heat L/(J/g) | 335 |
| equilibrium constant | 0.075 |
| salinity mass concentration c/(g/kg) | 0.03 |
| mesh number in x axis direction | 1500 |
| mesh number in y axis direction | 1500 |
| unit mesh size/μm | 0.07 |
| time step | 3000 |
| mesh size of initial crystal nucleus radius | 10 |
| initial supercooling degree of temperature ΔT/K | 15 |
图6 流速对单枝晶生长的影响(T0=253.15 K,Δ=0.9, c=3.5%, γ=0.045, qpf =5×105 W/m2)
Fig.6 Effect of flow velocity on single dendrite growth(T0=253.15 K,Δ=0.9, c=3.5%, γ=0.045, qpf =5×105 W/m2)
图8 流速对多枝晶生长的影响(T0=253.15 K,Δ=0.9,c=3.5%, γ=0.045, qpf =5×105 W/m2 )
Fig.8 Effect of flow velocity on dendrite growth(T0=253.15K,Δ=0.9,c=3.5%, γ=0.045, qpf =5×105 W/m2)
图10 流速对枝晶位置的影响(T0=253.15 K, Δ=0.9, c=3.5%, γ=0.045, qpf =5×105 W/m2)
Fig.10 Effect of flow velocity on dendrite position(T0=253.15 K, Δ=0.9, c=3.5%, γ=0.045, qpf =5×105 W/m2)
图11 无量纲过冷度对单枝晶生长的影响(T0=253.15 K, c=3.5%, γ=0.045, qpf =5×105 W/m2)
Fig.11 Effect of dimensionless subcooling on single dendrite growth (T0=253.15 K, c=3.5%, γ=0.045, qpf =5×105 W/m2)
图12 无量纲过冷度对多枝晶生长的影响(T0=253.15 K, c=3.5%, γ=0.045, qpf =5×105 W/m2)
Fig.12 Effect of dimensionless subcooling on growth of multiple dendrites (T0=253.15 K, c=3.5%, γ=0.045, qpf =5×105 W/m2)
图15 不同热通量qpf对单枝晶的影响(T0=253.15 K,v=0.1 m/s,c=3.5%, γ=0.045, Δ=0.9)
Fig.15 Effect of different heat flux qpf on single dendrites(T0=253.15 K,v=0.1 m/s,c=3.5%, γ=0.045, Δ=0.9)
图16 不同热通量qpf对多枝晶生长的影响(T0=253.15 K,v=0.1 m/s,c=3.5%, γ=0.045, Δ=0.9)
Fig.16 Effect of different heat flux qpf on the growth of multiple dendrites(T0=253.15 K,v=0.1 m/s,c=3.5%, γ=0.045, Δ=0.9)
图17 各向异性强度对枝晶生长的影响(T0=253.15 K,c=3.5%, qpf =5×105 W/m2, Δ=0.9)
Fig.17 Effect of anisotropy intensity on dendrite growth(T0=253.15 K,c=3.5%, qpf =5×105 W/m2, Δ=0.9)
图19 不同浓度对单枝晶生长的影响(T0=253.15 K,v=0.1 m/s,γ=0.045, qpf =5×105 W/m2, Δ=0.9)
Fig.19 Effects of different concentrations on single dendrite growth(T0=253.15 K,v=0.1 m/s,γ=0.045, qpf =5×105 W/m2, Δ=0.9)
图20 不同浓度对多枝晶生长的影响(T0=253.15 K,v=0.1 m/s,γ=0.045, qpf =5×105 W/m2, Δ=0.9)
Fig.20 Effect of different concentrations on growth of multiple dendrites(T0=253.15 K,v=0.1 m/s,γ=0.045, qpf =5×105 W/m2, Δ=0.9)
图21 不同浓度对盐溶液结晶的影响(T0=253.15 K,v=0.1 m/s,γ=0.045, q=5×105 W/m2, Δ=0.9)
Fig.21 Effect of different concentration on crystallization of salt solution(T0=253.15 K,v=0.1 m/s,γ=0.045, q=5×105 W/m2,Δ=0.9)
图22 不同初始温度对盐溶液结晶的影响(γ=0.045, qpf =5×105 W/m2, c=3.5%, Δ=0.9)
Fig.22 Effect of different initial temperature on crystallization of salt solution(γ=0.045, qpf =5×105 W/m2, c=3.5%, Δ=0.9)
图23 初始温度对溶液结晶的影响(γ=0.045, qpf =5×105 W/m2, c=3.5%, Δ=0.9)
Fig.23 Effect of initial temperature on crystallization of solution(γ=0.045, qpf =5×105 W/m2, c=3.5%, Δ=0.9)
| [1] | 刘曦, 李月玲, 王锦辉, 等. 超声场对过冷水溶液结晶的影响[J]. 制冷学报, 2021, 42(5): 118-126. |
| Liu X, Li Y L, Wang J H, et al. Effect of ultrasonic field on crystallization of supercooling aqueous solution[J]. Journal of Refrigeration, 2021, 42(5): 118-126. | |
| [2] | 杨亚楠, 陈正, 李德慧, 等. 过冷Ni-1at%Fe合金晶粒细化及再结晶机理分析[J]. 稀有金属材料与工程, 2014, 43(2): 336-340. |
| Yang Y N, Chen Z, Li D H, et al. Research on grain refinement and recrystallization mechanism of undercooled Ni-1at%Fe alloy[J]. Rare Metal Materials and Engineering, 2014, 43(2): 336-340. | |
| [3] | 方金升. 磁场对低温相变蓄冷材料过冷度和结晶过程影响的实验研究[D]. 济南: 山东大学, 2011. |
| Fang J S. Experimental research on effects of magnetic field on supercooling degree and crystallization process of low-temperature cool storage materials[D]. Jinan: Shandong University, 2011. | |
| [4] | 邹良旭. 基于群体平衡模型的水平圆管中冰浆流动与换热特性研究[D]. 上海: 上海交通大学, 2020. |
| Zou L X. Study on flow and heat transfer characteristics of ice slurry in horizontal tube based on population balance model[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
| [5] | 范成李. 冷冻悬浮结晶过程中工艺条件对冰晶纯度的影响研究[D]. 上海: 华东理工大学, 2020. |
| Fan C L. Study on the influence of process conditions on the purity of ice crystals in the process of freeze suspension crystallization[D]. Shanghai: East China University of Science and Technology, 2020. | |
| [6] | 王晓, 候鉴峰, 吴雨越, 等. 碳纳米管水悬浮液过冷度及非等温结晶过程[J]. 储能科学与技术, 2014, 3(3): 256-261. |
| Wang X, Hou J F, Wu Y Y, et al. Supercooling behaviour and non-isothermal crystallization process of aqueous suspensions of carbon nanotubes[J]. Energy storage science and technology, 2014, 3(3): 256-261. | |
| [7] | 唐临利, 许海峰, 郝保同, 等. 纳米微粒对多元醇水溶液过冷度和水合性质的影响[J]. 低温与超导, 2012, 40(8): 60-63, 68. |
| Tang L L, Xu H F, Hao B T, et al. Effect of nanoparticles on supercooling and hydration properties of polyalcohols solutions[J]. Refrigeration, 2012, 40(8): 60-63, 68. | |
| [8] | 刘圣春, 姜婷婷, 董紫腾. 纯水和氯化钠溶液凝固过程的实验研究[J]. 化工进展, 2016, 35(z2): 68-74. |
| Liu S C, Jiang T T, Dong Z T. Experimental study on water and sodium chloride solution solidification[J]. Chemical Industry and Engineering Progress, 2016, 35(z2): 68-74. | |
| [9] | 杜雁霞, 桂业伟, 张楠, 等. 过冷水滴凝固机理及凝固组织特征[J]. 航空学报, 2019, 40(7): 34-41. |
| Du Y X, Gui Y W, Zhang N, et al. Freezing mechanism and microstructure characteristics in solidification of supercooled water droplets[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 34-41. | |
| [10] | 杜雁霞, 桂业伟, 肖春华, 等. 过冷水滴液-固相变动力学特性研究[J]. 制冷学报, 2008 (4): 30-33. |
| Du Y X, Gui Y W, Xiao C H, et al. Investigation on solid-liquid phase change kinetics of supercooled water droplets[J]. Journal of Refrigeration, 2008(4):30-33. | |
| [11] | Kousksou T, El Rhafiki T, Mahdaoui M, et al. Crystallization of supercooled PCMs inside emulsions: DSC applications[J]. Solar Energy Materials and Solar Cells, 2012, 107: 28-36. |
| [12] | Wan X S, Tan D X, Lai Y, et al. Experimental study on pore water phase transition in saline soils[J]. Cold Regions Science and Technology, 2022, 203: 103661. |
| [13] | Wan X S, Zhong C M, Yang Z H, et al. Water and salt phase change in sodium sulfate soil based on differential scanning calorimetry[J]. Soils and Foundations, 2021, 61(2): 401-415. |
| [14] | Hu R, Zhang X L, Yang L W. Experimental study on the factors affecting supercooling of sodium sulfate decahydrate solution under variable temperature cooling[J]. Journal of Molecular Liquids, 2023, 386: 122453. |
| [15] | 陈梅英, 欧忠辉, 卓艳云, 等. 相场法模拟冰晶生长的参数优化[J]. 南京大学学报(自然科学), 2014, 50(6): 873-882. |
| Chen M Y, Ou Z H, Zhuo Y Y, et al. Optimization of correlative parameters in numerical simulation of ice crystal growth by phase-field[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(6): 873-882. | |
| [16] | 陈梅英, 陈永雪, 王文成, 等. 冷冻浓缩过程冰晶生长的相场法模拟[J]. 福建农林大学学报(自然科学版), 2010, 39(5): 548-551. |
| Chen M Y, Chen Y X, Wang W C, et al. Phase-field simulation of the growth mechanism of ice crystals in the process of freeze concentration [J] Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2010, 39(5): 548-551. | |
| [17] | 陈梅英, 冯力, 欧忠辉, 等. 基于相场法的液态食品冷冻浓缩冰晶生长数值模拟[J]. 农业工程学报,2014, 30(3): 231-237. |
| Chen M Y, Feng L, Ou Z H, et al. Numerical simulation of ice crystal growth of liquid food freeze concentration based on phase-field method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 231-237. | |
| [18] | 甄仌, 苏格毅, 杨红艳, 等. 数值模拟多冰晶的生长形貌[J]. 食品与发酵科技,2022, 58(5): 87-92. |
| Zhen B, Su G Y, Yang H Y, et al. Numerical simulation of the growth morphology of multi ice crystals[J]. Food and Fermentation Science & Technology, 2022, 58(5): 87-92. | |
| [19] | 韩端锋, 王永魁, 鞠磊,等. 六角冰晶生长过程的相场模拟[J]. 哈尔滨工程大学学报, 2019, 40(9): 1537-1542. |
| Han D F, Wang Y K, Ju L, et al. Phase field simulation of the hexagonal ice crystal growth process [J]. Journal of Harbin Engineering University, 2019, 40(9): 1537-1542. | |
| [20] | 白旭, 杨苏杰,田于逵. 基于改进相场法的盐度对海水结冰微观特性影响分析[J]. 船舶力学, 2022, 26(10): 1496-1502. |
| Bai X, Yang S J, Tian Y K. Simulation analysis of the effect of salinity on the microscopic characteristics of seawater icing based on improved phase field method[J]. Journal of Ship Mechanics, 2022, 26(10): 1496-1502. | |
| [21] | 白旭, 杨苏杰. 过冷度影响海水结冰形状与速度的相场模拟[J]. 上海交通大学学报, 2021, 55(5): 513-520. |
| Bai X, Yang S J. Simulation of undercooling influence on shape and velocity of seawater freezing process using phased field method [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5):513-520. | |
| [22] | Zhang D, Luo Y N, Zhao Y, et al. LBM-PFM simulation of directional frozen crystallisation of seawater in the presence of a single bubble[J]. Desalination, 2022, 542: 116065. |
| [23] | Zhang D, Li Y, Zhang J, et al. Pore-scale numerical study: brine water crystallization with ice crystal particle motion using the LBM-PFM-IBM[J]. Applied Thermal Engineering, 2023, 234: 121258. |
| [24] | Deryck A, Niemöller A, Baeten V, et al. Another pipeline in local partial least squares regression (LPLS) methods: assessing the impact of wavelet transform integration[J]. Microchemical Journal, 2024, 207: 112144. |
| [25] | Feng Z H, Jiang H L, Lin R Q, et al. Moving window sparse partial least squares method and its application in spectral data[J]. Chemometrics and Intelligent Laboratory Systems, 2024, 252: 105178. |
| [26] | Lou Z J, Lu S, Wang Y Q, et al. Analytical solution to partial least squares[J]. Information Sciences, 2024, 670: 120583. |
| [27] | Durickovic I. Using Raman spectroscopy for characterization of aqueous media and quantification of species in aqueous solution[M]//Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. InTech, 2016 |
| [28] | Devireddy R V, Leo P H, Lowengrub J S, et al. Measurement and numerical analysis of freezing in solutions enclosed in a small container[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1915-1931. |
| [29] | Han B, Bischof J C. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications[J]. Journal of Biomechanical Engineering, 2004, 126(2): 196-203. |
| [30] | 陈龙泉, 董智元, 冯浩岩, 等. 基于液滴冻结现象的凝固点测量实验设计与实现[J]. 实验科学与技术, DOI: 10.12179/1672-4550.20240412 . |
| Chen L Q, Dong Z Y, Feng H Y, et al. Design and implementation of a freezing point measurement platform based on dropwise freezing phenomenon[J]. Experiment Science and Technology, DOI: 10.12179/1672-4550.20240412 . | |
| [31] | Song J T, Zhang D, Yuan H, et al. Sea water frozen crystalisation impacted by flow and heterogeneous nucleation: PFM-LBM coupled modeling, simulation and experiments[J]. Desalination, 2022, 524: 115484. |
| [32] | 王智平, 王喜君, 冯力, 等. 基于LBM算法的强迫对流合金枝晶生长相场法模拟[J]. 兰州理工大学学报, 2014, 40(2): 18-22. |
| Wang Z P, Wang X J, Feng L, et al. Phase-field simulation of alloy dendritic growth based on LBM algorithm in force flow[J]. Journal of Lanzhou University of Technology, 2014, 40(2): 18-22. | |
| [33] | 陶乐仁, 华泽钊. 低温保护剂溶液结晶过程的显微实验研究[J]. 工程热物理学报, 2001, 22(4): 481-484. |
| Tao L R, Hua Z Z. A microscopic study of the crystallization in cryoprotectent agents[J]. Journal of engineering thermophysics, 2001, 22(4): 481-484. | |
| [34] | 邹阳, 钱华, 梁文清. 制冷剂中冰晶生长的数值模拟[J]. 制冷技术, 2017, 37(2): 64-69. |
| Zou Y, Qian H, Liang W Q. Numerical simulation of ice crystal growth in refrigerant [J]. Chinese Journal of Refrigeration Technology, 2017, 37(2): 64-69. | |
| [35] | 任泓颖.基于冰晶调控的防冻剂作用机理研究与设计[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
| Ren H Y. Research and design of antifreeze mechanism based on ice crystal control [D]. Harbin: Harbin Institute of Technology, 2021. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [3] | 于宏鑫, 王宁波, 郭焱华, 邵双全. 动态蓄冰系统的板式换热器流动换热模拟研究[J]. 化工学报, 2025, 76(S1): 106-113. |
| [4] | 吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139. |
| [5] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [6] | 张圣美, 李明, 张莹, 易茜, 杨依婷, 刘雅莉. 乳化剂和温度对相变微胶囊性能的影响分析[J]. 化工学报, 2025, 76(S1): 444-452. |
| [7] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [8] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [9] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [10] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [11] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [12] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [13] | 吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016. |
| [14] | 徐成龙, 李果, 王玉, 谢林生, 张国辉, 梁鹏飞. 等弧厚复杂药型螺压成型模具的模拟仿真研究[J]. 化工学报, 2025, 76(8): 3954-3963. |
| [15] | 王孝宇, 戴贵龙, 邓树坤, 龚凌诸. Laguerre-Voronoi开孔泡沫流动-传热综合性能孔隙尺度模拟[J]. 化工学报, 2025, 76(7): 3259-3273. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号