化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3954-3963.DOI: 10.11949/0438-1157.20250133
徐成龙1(
), 李果1, 王玉1, 谢林生1(
), 张国辉2, 梁鹏飞2
收稿日期:2025-02-13
修回日期:2025-03-11
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
谢林生
作者简介:徐成龙(2000—),男,硕士,xcl1526259715@163.com
Chenglong XU1(
), Guo LI1, Yu WANG1, Linsheng XIE1(
), Guohui ZHANG2, Pengfei LIANG2
Received:2025-02-13
Revised:2025-03-11
Online:2025-08-25
Published:2025-09-17
Contact:
Linsheng XIE
摘要:
固体推进剂的螺压成型过程具有工艺流程连续、产品质量稳定、自控性强等优点,所制备的推进剂药柱适合大面积推广应用。为了充分提高螺压推进剂的燃烧利用率,针对4种等弧厚复杂药型,设计了不同的螺压挤出模具结构,基于数值模拟的方法,对固体推进剂螺压成型过程进行模拟研究,分析了药料在不同模具结构挤出成型过程中的流场特性和挤出胀大现象,并与实验结果进行对比分析,探究了影响复杂药型精密挤出成型质量的主要因素。研究结果表明:模具出口药料的流动行为很大程度上由模具内的压力分布决定,不同模具结构能够改善药料在横截面内的不均匀流动;分析药料在螺压成型过程的流动平衡系数发现,匹配车轮型药柱的模具结构使药料出口处的流动平衡系数最小,低速区流速为最大流速的42%~56%,且挤出胀大比较小,为1.095,此时药柱成型质量最佳。
中图分类号:
徐成龙, 李果, 王玉, 谢林生, 张国辉, 梁鹏飞. 等弧厚复杂药型螺压成型模具的模拟仿真研究[J]. 化工学报, 2025, 76(8): 3954-3963.
Chenglong XU, Guo LI, Yu WANG, Linsheng XIE, Guohui ZHANG, Pengfei LIANG. Simulation study of screw extrusion forming die for complex propellant grains with uniform arc thickness[J]. CIESC Journal, 2025, 76(8): 3954-3963.
| 边界位置 | 边界代号 | 边界条件 |
|---|---|---|
| 入口 | inlet | fn=fs=104 |
| 螺杆机筒内壁 | outwall_1 | vn=vs=0 |
| 螺杆表面 | inner_1 | vx,vy,vz |
| 模具机筒内壁 | outwall_2 | vn=vs=0 |
| 模具模针表面 | inner_2 | vn=vs=0 |
| 出口 | outlet | fn=fs=0 |
表1 流动边界条件
Table 1 Flow boundary conditions
| 边界位置 | 边界代号 | 边界条件 |
|---|---|---|
| 入口 | inlet | fn=fs=104 |
| 螺杆机筒内壁 | outwall_1 | vn=vs=0 |
| 螺杆表面 | inner_1 | vx,vy,vz |
| 模具机筒内壁 | outwall_2 | vn=vs=0 |
| 模具模针表面 | inner_2 | vn=vs=0 |
| 出口 | outlet | fn=fs=0 |
| 药型 | 挤出胀大比B |
|---|---|
| 梅花型 | 1.09 |
| 六边型 | 1.16 |
| 车轮型 | 1.09 |
| 蚊香型 | 1.08 |
表2 不同复杂结构药柱的挤出胀大比
Table 2 Extrusion swelling ratios of different complex grain geometries
| 药型 | 挤出胀大比B |
|---|---|
| 梅花型 | 1.09 |
| 六边型 | 1.16 |
| 车轮型 | 1.09 |
| 蚊香型 | 1.08 |
| 出口截面 | 面积S/mm2 | 挤出胀大比B |
|---|---|---|
| 设计截面 | 790 | — |
| 模拟截面 | 865 | 1.09 |
| 实验截面 | 939 | 1.19 |
表3 不同情况下与挤出胀大有关的参数
Table 3 Parameters related to extrusion swelling under different conditions
| 出口截面 | 面积S/mm2 | 挤出胀大比B |
|---|---|---|
| 设计截面 | 790 | — |
| 模拟截面 | 865 | 1.09 |
| 实验截面 | 939 | 1.19 |
| [1] | 李敏, 薛平, 王江宁, 等. 典型含能材料单螺杆压伸过程模拟分析[J]. 固体火箭技术, 2020, 43(5): 594-601. |
| Li M, Xue P, Wang J N, et al. Simulation analysis for single-screw extrusion process of typical energetic material[J]. Journal of Solid Rocket Technology, 2020, 43(5): 594-601. | |
| [2] | Nastaj A, Wilczyński K. Optimization for the contrary-rotating double-screw extrusion of plastics[J]. Polymers, 2023, 15(6): 1489. |
| [3] | 钟婷婷. 双基推进剂螺压挤出成型工艺流变特性的数值模拟研究[D]. 南京: 南京理工大学, 2015. |
| Zhong T T. Numerical simulation study on rheological characteristics of double-base propellant screw extrusion molding process[D]. Nanjing: Nanjing University of Science and Technology, 2015. | |
| [4] | 胡绵伟. 基于POLYFLOW单螺杆挤出推进剂过程的数值模拟[D]. 南京: 南京理工大学, 2020. |
| Hu M W. Numerical simulation of propellant extrusion by single screw based on POLYFLOW[D]. Nanjing: Nanjing University of Science and Technology, 2020. | |
| [5] | Elghafour A M A, Radwan M, Fahd A, et al. Novel approach to quantify the chemical stability and shelf life of modified double-base propellants[J]. Defence Technology, 2018, 14(6): 720-724. |
| [6] | Zhang Y, Liu R Q, Cao W G, et al. Effects of RDX and HMX on the thermal stability properties of modified double-base propellants[J]. FirePhysChem, 2025. DOI:10.1016/j.fpc.2025.01.006 . |
| [7] | Elbasuney S, Elghafour A M A, Radwan M, et al. Novel aspects for thermal stability studies and shelf life assessment of modified double-base propellants[J]. Defence Technology, 2019, 15(3): 300-305. |
| [8] | Zhang C, Zhang X H, Yang T Y, et al. Revealing the mechanism of lead and copper catalysts regulating the combustion of modified double-base propellants[J]. Materials Today Chemistry, 2025, 44: 102564. |
| [9] | 张旭, 刘向阳, 王士欣, 等. 改性双基推进剂非线性本构模型及其数值实现[J]. 固体火箭技术, 2023, 46(4): 557-564. |
| Zhang X, Liu X Y, Wang S X, et al. Nonlinear constitutive model and numerical implementation of modified double-base propellant[J]. Journal of Solid Rocket Technology, 2023, 46(4): 557-564. | |
| [10] | Liu Y H, Shao Z Q, Yuan J J, et al. Structure and properties of chain branched nitrocellulose[J]. Central European Journal of Energetic Materials, 2021, 18(4): 448-476. |
| [11] | Yadav N, Srivastava P K, Varma M. Recent advances in catalytic combustion of AP-based composite solid propellants[J]. Defence Technology, 2021, 17(3): 1013-1031. |
| [12] | Dias R P, Silvera I F. Observation of the Wigner-Huntington transition to metallic hydrogen[J]. Science, 2017, 355(6326): 715-718. |
| [13] | 陆志猛, 曾庆林, 郑丽兵, 等. 固体推进剂混合装备研究现状与发展[J]. 固体火箭技术, 2021, 44(3): 372-378. |
| Lu Z M, Zeng Q L, Zheng L B, et al. Review on solid propellant mixing equipment[J]. Journal of Solid Rocket Technology, 2021, 44(3): 372-378. | |
| [14] | 张丹丹. 发射药挤出成型过程的数值模拟研究[D]. 南京: 南京理工大学, 2015. |
| Zhang D D. Numerical simulation of extrusion forming process of propellant[D]. Nanjing: Nanjing University of Science and Technology, 2015. | |
| [15] | 王倩. 基于POLYFLOW的发射药挤出过程模拟[D]. 南京: 南京理工大学, 2014. |
| Wang Q. Simulation of propellant extrusion process based on POLYFLOW[D]. Nanjing: Nanjing University of Science and Technology, 2014. | |
| [16] | Martinez-Pastor J, Franco P, Moratilla D, et al. Simulation of gelled propellant doughs isothermal flow through extrusion dies using finite difference method[J]. Procedia Manufacturing, 2017, 13: 410-417. |
| [17] | Carneiro O S, Nóbrega J M, Pinho F T, et al. Computer aided rheological design of extrusion dies for profiles[J]. Journal of Materials Processing Technology, 2001, 114(1): 75-86. |
| [18] | Rajkumar A, Ferrás L L, Fernandes C, et al. Design guidelines to balance the flow distribution in complex profile extrusion dies[J]. International Polymer Processing, 2017, 32(1): 58-71. |
| [19] | Ettinger H J, Pittman J F T, Sienz J. Optimization-driven design of dies for profile extrusion: parameterization, strategy, and performance[J]. Polymer Engineering and Science, 2013, 53(1): 189-203. |
| [20] | Mu Y, Hang L Q, Chen A B, et al. Influence of die geometric structure on flow balance in complex hollow plastic profile extrusion[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1): 1275-1287. |
| [21] | Pauli L, Behr M, Elgeti S. Towards shape optimization of profile extrusion dies with respect to homogeneous die swell[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 200: 79-87. |
| [22] | 栗阳, 王振文, 吴敏. 双螺杆挤出机流道流场和操作参数的数值模拟研究进展[J]. 食品工业科技, 2021, 42(2): 338-344. |
| Li Y, Wang Z W, Wu M. Research progress on numerical modeling of flow field and operating parameters in twin screw extruder[J]. Science and Technology of Food Industry, 2021, 42(2): 338-344. | |
| [23] | Zhou K, He Z Q, Yin S P, et al. Numerical simulation for exploring the effect of viscosity on single-screw extrusion process of propellant[J]. Procedia Engineering, 2014, 84: 933-939. |
| [24] | Ioannidis A, Boufali M, Vosniakos G C, et al. Development of a low cost extrusion based 3D printer for high performance engineering polymers[J]. Key Engineering Materials, 2023, 960: 37-45. |
| [25] | 刘欢欢, 张江波, 侯龙, 等. 基于逆向挤出的七孔发射药口模设计[J]. 火炸药学报, 2023, 46(12): 1107-1116. |
| Liu H H, Zhang J B, Hou L, et al. Die design of seven-perforated gun propellant based on inverse extrusion[J]. Chinese Journal of Explosives & Propellants, 2023, 46(12): 1107-1116. | |
| [26] | 唐小军, 冯昌林, 赵煜华, 等. 七孔发射药内外弧厚差异对其燃烧性能的影响[J]. 火炸药学报, 2016, 39(4): 97-101. |
| Tang X J, Feng C L, Zhao Y H, et al. Effect of inside and outside web thickness difference on the combustion performance of 7-perf granular gun propellant[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 97-101. | |
| [27] | 傅陈超. 推进剂代料用双螺杆挤出机混合塑化过程模拟及验证研究[D]. 北京: 北京化工大学, 2024. |
| Fu C C. Simulation and verification study on mixing plasticization process of twin-screw extruder for propellant substitution[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| [28] | 何家隆, 谷琳, 朱钰婷, 等. 固体推进剂螺旋压伸挤出过程流变模型建立[J]. 中国塑料, 2021, 35(2): 58-62. |
| He J L, Gu L, Zhu Y T, et al. Establishment of rheological model of solid propellant in spiral extrusion process[J]. China Plastics, 2021, 35(2): 58-62. | |
| [29] | 张广冬, 黄翔. 以制品几何精度为目标的塑料挤出模具优化设计方法[J]. 机械工程学报, 2023, 59(8): 142-150. |
| Zhang G D, Huang X. Optimization design method of plastic extrusion die for product geometric accuracy[J]. Journal of Mechanical Engineering, 2023, 59(8): 142-150. | |
| [30] | Zhang G D, Huang X, Li S G, et al. Optimized design method for profile extrusion die based on NURBS modeling[J]. Fibers and Polymers, 2019, 20(8): 1733-1741. |
| [31] | Cogswell F N. Stretching flow instabilities at the exits of extrusion dies[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(1): 37-47. |
| [32] | Krir H, Ayadi A. Extrudate swell and defects under the effect of radial flow and die geometry[J]. Journal of Non-Newtonian Fluid Mechanics, 2025, 336: 105381. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [3] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [4] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [5] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [6] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [7] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [8] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [9] | 马永丽, 安澍, 杨捷, 刘明言. 气液固流化床直接数值模拟研究进展[J]. 化工学报, 2025, 76(8): 3772-3788. |
| [10] | 张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852. |
| [11] | 吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016. |
| [12] | 龚宇, 王胜利, 孙金菊, 海阔, 黄文. 微型多级压缩机充气系统的热力学模型及规律探究[J]. 化工学报, 2025, 76(7): 3626-3638. |
| [13] | 陈佳祥, 周伟, 张学伟, 王丽杰, 黄玉明, 于洋, 孙苗婷, 李宛静, 袁骏舒, 张宏博, 孟晓晓, 高继慧, 赵广播. 脉冲电压下二维PEMWE模型的制氢特性仿真研究[J]. 化工学报, 2025, 76(7): 3521-3530. |
| [14] | 陈培强, 郑群, 姜玉廷, 熊春华, 陈今茂, 王旭东, 黄龙, 阮曼, 徐万里. 电液流量及电流密度对海水激活电池输出特性的影响[J]. 化工学报, 2025, 76(7): 3235-3245. |
| [15] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号