| [1] |
许友好, 李浩天, 刘昌呈. “双碳”目标下石油炼制技术研发策略与工业实践[J]. 石油炼制与化工, 2024, 55(1): 171-179.
|
|
Xu Y H, Li H T, Liu C C. Development strategy and industrial practice of petroleum refining technology under the goal of “carbon peak and carbon neutrality"[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 171-179.
|
| [2] |
Liu N, Wang J, Sun S L, et al. Optimized principal component analysis and multi-state Bayesian network integrated method for chemical process monitoring and variable state prediction[J]. Chemical Engineering Journal, 2022, 430: 132617.
|
| [3] |
宋冰, 郭涛, 侍洪波, 等. 基于双子空间并行回归的化工过程质量相关故障检测方法[J]. 化工学报, 2023, 74(11): 4600-4610.
|
|
Song B, Guo T, Shi H B, et al. A chemical process quality-related fault detection method based on twin-space parallel regression[J]. CIESC Journal, 2023, 74(11): 4600-4610.
|
| [4] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
| [5] |
Park D, Hoshi Y, Kemp C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
|
| [6] |
Li W X, Shang Z W, Zhang J, et al. A novel unsupervised anomaly detection method for rotating machinery based on memory augmented temporal convolutional autoencoder[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106312.
|
| [7] |
Yao Y Y, Ma J H, Ye Y M. Regularizing autoencoders with wavelet transform for sequence anomaly detection[J]. Pattern Recognition, 2023, 134: 109084.
|
| [8] |
Zeng L, Jin Q W, Lin Z M, et al. Dual-attention LSTM autoencoder for fault detection in industrial complex dynamic processes[J]. Process Safety and Environmental Protection, 2024, 185: 1145-1159.
|
| [9] |
Zhang Z W, Wu L F. Graph neural network-based bearing fault diagnosis using Granger causality test[J]. Expert Systems with Applications, 2024, 242: 122827.
|
| [10] |
Zhao C H, Chen X. Data-driven nonstationary industrial process monitoring[M]//Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, 2024.
|
| [11] |
Staniek M, Lehnertz K. Symbolic transfer entropy[J]. Physical Review Letters, 2008, 100(15): 158101.
|
| [12] |
Alobaid F, Almohammed N, Massoudi Farid M, et al. Progress in CFD simulations of fluidized beds for chemical and energy process engineering[J]. Progress in Energy and Combustion Science, 2022, 91: 100930.
|
| [13] |
何洋, 王利民, 唐春丽, 等. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556-4564.
|
|
He Y, Wang L M, Tang C L, et al. Numerical simulation of convection condensation heat transfer of H-fixed tubes with wet flue gas[J]. CIESC Journal, 2019, 70(12): 4556-4564.
|
| [14] |
周国峰, 王利民, 王小伟, 等. 基于时驱硬球算法与格子玻尔兹曼方法的颗粒流体系统直接数值模拟[J]. 科学通报, 2011, 56(16): 1246-1256.
|
|
Zhou G F, Wang L M, Wang X W, et al. Direct numerical simulation scheme for particle-fluid systems based on a time-driven hard-sphere and the lattice Boltzmann method[J]. Chinese Science Bulletin, 2011, 56(16): 1246-1256.
|
| [15] |
Tang Y N, Liu C, Kuang S B, et al. CFD modeling investigation of oxy-fuel combustion application in an industrial-scale FCC regenerator[J]. Journal of the Energy Institute, 2024, 117: 101796.
|
| [16] |
Zhao Y P, Li C L, Shi X G, et al. Simulation analysis of CO2 in situ enrichment technology of fluidized catalytic cracking regenerator[J]. Powder Technology, 2024, 434: 119386.
|
| [17] |
Lan X Y, Shi X G, Wang C X, et al. Process intensification of multiphase flow and reaction system: perspectives[J]. Chemical Engineering and Processing-Process Intensification, 2024, 204: 109938.
|
| [18] |
Zhang H L, Zhu A Q, Xu J, et al. Gas-solid reactor optimization based on EMMS-DPM simulation and machine learning[J]. Particuology, 2024, 89: 131-143.
|
| [19] |
Aminmahalati A, Fazlali A, Safikhani H. Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA Ⅱ algorithm[J]. Energy, 2021, 221: 119859.
|
| [20] |
高学金, 姚玉卓, 韩华云, 等. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521.
|
|
Gao X J, Yao Y Z, Han H Y, et al. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder[J]. CIESC Journal, 2023, 74(6): 2503-2521.
|
| [21] |
Sun R R, Wang Y Q. Key-performance-indicator-related fault detection based on deep orthonormal subspace analysis[J]. IEEE Transactions on Industrial Informatics, 2024, 20(5): 7249-7258.
|
| [22] |
Yu J H, Gao X, Li B F, et al. A filter-augmented auto-encoder with learnable normalization for robust multivariate time series anomaly detection[J]. Neural Networks, 2024, 170: 478-493.
|
| [23] |
邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537.
|
|
Shao Y Z, Zhao Z G, Liu F. Quality-related non-stationary process fault detection method by common trends model[J]. CIESC Journal, 2023, 74(6): 2522-2537.
|
| [24] |
Runge J, Bathiany S, Bollt E, et al. Inferring causation from time series in Earth system sciences[J]. Nature Communications, 2019, 10(1): 2553.
|
| [25] |
刘梦溪, 卢春喜, 时铭显. 催化裂化后反应系统快分的研究进展[J]. 化工学报, 2016, 67(8): 3133-3145.
|
|
Liu M X, Lu C X, Shi M X. Advances in quick separators of post-riser system in FRCC unit[J]. CIESC Journal, 2016, 67(8): 3133-3145.
|
| [26] |
马明亮, 卢朝鹏, 赵静. 催化裂化装置旋风分离器运行情况分析及对策[J]. 石油与天然气化工, 2020, 49(6): 34-39.
|
|
Ma M L, Lu Z P, Zhao J. Operation situation analysis and countermeasures of the cyclone separator for catalytic cracking unit[J]. Chemical Engineering of Oil & Gas, 2020, 49(6): 34-39.
|
| [27] |
Hu X, Zhang T Y, Geng Z Q, et al. Noise adaptive filtering model integrating spatio-temporal feature for soft sensor[J]. Expert Systems with Applications, 2024, 239: 122453.
|
| [28] |
Hao X C, Wang Y Z, Zhang Z P, et al. Root cause analysis of faults in cement pre-decomposition system using kernel principal component analysis and multi-scale symbolic transfer entropy[J]. Chemical Engineering Science, 2024, 286: 119681.
|
| [29] |
Duan S Y, Zhao C H, Wu M. Multiscale partial symbolic transfer entropy for time-delay root cause diagnosis in nonstationary industrial processes[J]. IEEE Transactions on Industrial Electronics, 2023, 70(2): 2015-2025.
|
| [30] |
Faes L, Nollo G, Porta A. Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series[J]. Entropy, 2013, 15(1): 198-219.
|
| [31] |
Zhao X J, Sun Y P, Li X M, et al. Multiscale transfer entropy: measuring information transfer on multiple time scales[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 202-212.
|