化工学报 ›› 2025, Vol. 76 ›› Issue (6): 3104-3114.DOI: 10.11949/0438-1157.20240972
收稿日期:2024-08-29
修回日期:2024-12-23
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
周晅毅
作者简介:王富玉(1996—),男,博士研究生,wfy@tongji.edu.cn
基金资助:Received:2024-08-29
Revised:2024-12-23
Online:2025-06-25
Published:2025-07-09
Contact:
Xuanyi ZHOU
摘要:
利用非定常伴随方程进一步发展了基于固定探测器网络的遗传算法,并将其用于化工储罐区泄漏后泄漏位置和泄漏率的反演。首先基于计算流体动力学(CFD)模拟,利用非定常伴随方程建立源-探测器关系,然后利用遗传算法对泄漏进行反演。非定常伴随方程在准确建立源-探测器关系的同时,可以节省大量的CFD模拟计算量,且遗传算法的计算高效性可实现对泄漏的快速反演。在考虑了探测器的测量误差和阈值后,对10个泄漏源进行反演,结果表明各泄漏源的反演精度均较高。此外,还讨论了反演精度随泄漏时间的变化情况,表明所提方法可在复杂流动下快速准确地反演泄漏源。
中图分类号:
王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114.
Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm[J]. CIESC Journal, 2025, 76(6): 3104-3114.
| 项目 | 设置 | |
|---|---|---|
| 仿真模型 | 计算域 | 21.75H (x)×12.8H (y)×6H (z) |
| 网格数 | 1288769个 | |
| 求解设置 | 湍流模型 | 标准k-ε模型[ |
| 速度-压力耦合 | 压力耦合方程组的半隐式方法(semi-implicit method for pressure-linked equations, SIMPLE) | |
| 对流项离散格式 | 二阶迎风格式 | |
| 扩散项离散格式 | 二阶迎风格式 | |
| 近壁面处理 | 标准壁面函数 | |
| 边界条件 | 入口 | 速度入口[ |
| 出口 | 自由出流[ | |
| 顶面和侧面 | 对称 | |
| 地面和储罐 | 无滑移壁面[ | |
| 探测器(求解伴随方程) | 源强度为1[ | |
表1 求解设置及边界条件
Table 1 Solver settings and boundary conditions
| 项目 | 设置 | |
|---|---|---|
| 仿真模型 | 计算域 | 21.75H (x)×12.8H (y)×6H (z) |
| 网格数 | 1288769个 | |
| 求解设置 | 湍流模型 | 标准k-ε模型[ |
| 速度-压力耦合 | 压力耦合方程组的半隐式方法(semi-implicit method for pressure-linked equations, SIMPLE) | |
| 对流项离散格式 | 二阶迎风格式 | |
| 扩散项离散格式 | 二阶迎风格式 | |
| 近壁面处理 | 标准壁面函数 | |
| 边界条件 | 入口 | 速度入口[ |
| 出口 | 自由出流[ | |
| 顶面和侧面 | 对称 | |
| 地面和储罐 | 无滑移壁面[ | |
| 探测器(求解伴随方程) | 源强度为1[ | |
| 源 | ||||
|---|---|---|---|---|
| S1 | 1.12/1.12/0.04/0% | 1.54/1.55/0.04/0% | 0.04/0.06/0.03/21.25% | 3/2.7/0.6/0.9% |
| S2 | 1.02/1.06/0.06/0.17% | 1.44/1.42/0.02/0.02% | 0.01/0.01/0.01/5.08% | 3/3.7/0.9/3.9% |
| S3 | 1.07/1.08/0.03/0.01% | 1.21/1.21/0.01/0% | 0.05/0.05/0.01/0.50% | 3/4.4/0.5/15.3% |
| S4 | 1.02/1.06/0.07/0.12% | 1.12/1.14/0.01/0.03% | 0.02/0.01/0.01/12.26% | 3/4.1/0.8/10.5% |
| S5 | 1.14/1.14/0.02/0% | 1.07/1.08/0.02/0.01% | 0.01/0.02/0.02/26.23% | 3/4.2/1.0/11.4% |
| S6 | 1.35/1.36/0.07/0% | 1.49/1.50/0.04/0% | 0.03/0.03/0/1.20% | 3/2.2/1.0/9.1% |
| S7 | 1.23/1.21/0.08/0.03% | 1.44/1.42/0.04/0.02% | 0.01/0/0/100+ | 3/4.0/1.4/9.0% |
| S8 | 1.21/1.21/0.01/0% | 1.28/1.27/0.01/0% | 0.10/0.11/0.03/1.94% | 3/3.4/0.8/1.5% |
| S9 | 1.28/1.27/0.14/0.02% | 1.21/1.21/0.09/0% | 0.02/0.02/0.02/3.46% | 3/3.3/0.8/1.1% |
| S10 | 1.23/1.22/0.09/0.01% | 1.12/1.13/0.05/0.01% | 0.05/0.05/0/0.06% | 3/3.2/0.5/0.3% |
表2 反演结果(t*=70)
Table 2 Estimated results (t*=70)
| 源 | ||||
|---|---|---|---|---|
| S1 | 1.12/1.12/0.04/0% | 1.54/1.55/0.04/0% | 0.04/0.06/0.03/21.25% | 3/2.7/0.6/0.9% |
| S2 | 1.02/1.06/0.06/0.17% | 1.44/1.42/0.02/0.02% | 0.01/0.01/0.01/5.08% | 3/3.7/0.9/3.9% |
| S3 | 1.07/1.08/0.03/0.01% | 1.21/1.21/0.01/0% | 0.05/0.05/0.01/0.50% | 3/4.4/0.5/15.3% |
| S4 | 1.02/1.06/0.07/0.12% | 1.12/1.14/0.01/0.03% | 0.02/0.01/0.01/12.26% | 3/4.1/0.8/10.5% |
| S5 | 1.14/1.14/0.02/0% | 1.07/1.08/0.02/0.01% | 0.01/0.02/0.02/26.23% | 3/4.2/1.0/11.4% |
| S6 | 1.35/1.36/0.07/0% | 1.49/1.50/0.04/0% | 0.03/0.03/0/1.20% | 3/2.2/1.0/9.1% |
| S7 | 1.23/1.21/0.08/0.03% | 1.44/1.42/0.04/0.02% | 0.01/0/0/100+ | 3/4.0/1.4/9.0% |
| S8 | 1.21/1.21/0.01/0% | 1.28/1.27/0.01/0% | 0.10/0.11/0.03/1.94% | 3/3.4/0.8/1.5% |
| S9 | 1.28/1.27/0.14/0.02% | 1.21/1.21/0.09/0% | 0.02/0.02/0.02/3.46% | 3/3.3/0.8/1.1% |
| S10 | 1.23/1.22/0.09/0.01% | 1.12/1.13/0.05/0.01% | 0.05/0.05/0/0.06% | 3/3.2/0.5/0.3% |
| [11] | Li F, Liu X R, Liu J X, et al. Solutions to mitigate the impact of measurement noise on the air pollution source strength estimation in a multi-zone building[J]. Building Simulation, 2020, 13(6): 1329-1337. |
| [12] | Pudykiewicz J A. Application of adjoint tracer transport equations for evaluating source parameters[J]. Atmospheric Environment, 1998, 32(17): 3039-3050. |
| [13] | Hutchinson M, Oh H, Chen W H. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148. |
| [14] | Jia H Y, Kikumoto H. Line source estimation of environmental pollutants using super-Gaussian geometry model and Bayesian inference[J]. Environmental Research, 2021, 194: 110706. |
| [15] | Liu X, Zhai Z. Location identification for indoor instantaneous point contaminant source by probability-based inverse computational fluid dynamics modeling[J]. Indoor Air, 2008, 18(1): 2-11. |
| [16] | Wang H D, Lu S, Cheng J J, et al. Inverse modeling of indoor instantaneous airborne contaminant source location with adjoint probability-based method under dynamic airflow field[J]. Building and Environment, 2017, 117: 178-190. |
| [17] | Xue F, Kikumoto H, Li X F, et al. Bayesian source term estimation of atmospheric releases in urban areas using LES approach[J]. Journal of Hazardous Materials, 2018, 349: 68-78. |
| [18] | Ma D L, Deng J Q, Zhang Z X. Comparison and improvements of optimization methods for gas emission source identification[J]. Atmospheric Environment, 2013, 81: 188-198. |
| [19] | Li H, Zhang J W. Fast source term estimation using the PGA-NM hybrid method[J]. Engineering Applications of Artificial Intelligence, 2017, 62: 68-79. |
| [20] | Ma D L, Tan W, Wang Q S, et al. Application and improvement of swarm intelligence optimization algorithm in gas emission source identification in atmosphere[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 262-271. |
| [21] | 朱建杰, 周晅毅, 顾明. 基于贝叶斯推断的时变流场下污染源反演[J]. 同济大学学报(自然科学版), 2022, 50(6): 802-811. |
| Zhu J J, Zhou X Y, Gu M. Source inversion in time-variant flow field based on Bayesian inference[J]. Journal of Tongji University (Natural Science), 2022, 50(6): 802-811. | |
| [22] | 郭少冬, 杨锐, 苏国锋, 等. 基于伴随方程和MCMC方法的室内污染源反演模型研究[J]. 应用基础与工程科学学报, 2010, 18(4): 695-704. |
| Guo S D, Yang R, Su G F, et al. Investigation of the inversion modeling for indoor contaminant source based on the adjoint equation and MCMC method[J]. Journal of Basic Science and Engineering, 2010, 18(4): 695-704. | |
| [23] | Guo S D, Yang R, Zhang H, et al. Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method[J]. International Journal of Heat and Mass Transfer, 2009, 52(17/18): 3955-3962. |
| [24] | Feng L, Ong Y S, Gupta A. Genetic algorithm and its advances in embracing memetics[M]//Evolutionary and Swarm Intelligence Algorithms. Cham: Springer International Publishing, 2018: 61-84. |
| [25] | Wang F Y, Zhou X Y, Kikumoto H. Improvement of optimization methods in indoor time-variant source parameters estimation combining unsteady adjoint equations and flow field information[J]. Building and Environment, 2022, 226: 109710. |
| [26] | Wang F Y, Zhou X Y, Kikumoto H, et al. Detector configuration optimization based on wind tunnel tests using normalized adjoint concentration gradient for urban spatial source parameters estimation[J]. Building and Environment, 2024, 248: 111094. |
| [27] | Wang Y, Huang H, Huang L D, et al. Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75: 102-113. |
| [28] | He Z Z, Qi H, Yao Y C, et al. Inverse estimation of the particle size distribution using the Fruit Fly Optimization Algorithm[J]. Applied Thermal Engineering, 2015, 88: 306-314. |
| [29] | Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1749-1761. |
| [30] | Huang X T, Huang Y D, Xu N, et al. Thermal effects on the dispersion of rooftop stack emission in the wake of a tall building within suburban areas by wind-tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205: 104295. |
| [31] | Cui P Y, Zhang Y, Chen W Q, et al. Wind-tunnel studies on the characteristics of indoor/outdoor airflow and pollutant exchange in a building cluster[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 214: 104645. |
| [32] | Wang X M, Tan Y F, Zhang T T, et al. Diffusion process simulation and ventilation strategy for small-hole natural gas leakage in utility tunnels[J]. Tunnelling and Underground Space Technology, 2020, 97: 103276. |
| [1] | 金伟其, 吴月荣, 王霞, 等. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
| Jin W Q, Wu Y R, Wang X, et al. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks[J]. CIESC Journal, 2023, 74(S1): 32-44. | |
| [2] | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
| Jia M S, Chen G H, Hu K. Review of risk assessment and pre-control of Domino effect in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
| [3] | Feng Q L, Zhang C X, Lu J Y, et al. Source localization in dynamic indoor environments with natural ventilation: an experimental study of a particle swarm optimization-based multi-robot olfaction method[J]. Building and Environment, 2019, 161: 106228. |
| [4] | Bourne J R, Pardyjak E R, Leang K K. Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots[J]. IEEE Transactions on Robotics, 2019, 35(4): 967-986. |
| [5] | 周晅毅, 王富玉, 杨流阔, 等. 基于Nelder-Mead算法的机器人主动嗅觉室内时变污染源定位[J]. 同济大学学报(自然科学版), 2022, 50(6): 812-820. |
| Zhou X Y, Wang F Y, Yang L K, et al. Locating indoor time-variant contaminant sources based on nelder-mead algorithm using robot active olfaction method[J]. Journal of Tongji University (Natural Science), 2022, 50(6): 812-820. | |
| [6] | Keats A, Yee E, Lien F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41(3): 465-479. |
| [7] | Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Beijing: Science Press, 2005. |
| [8] | Jia H Y, Kikumoto H. Sensor configuration optimization based on the entropy of adjoint concentration distribution for stochastic source term estimation in urban environment[J]. Sustainable Cities and Society, 2022, 79: 103726. |
| [9] | Cai H, Li X T, Chen Z L, et al. Rapid identification of multiple constantly-released contaminant sources in indoor environments with unknown release time[J]. Building and Environment, 2014, 81: 7-19. |
| [10] | Ma D L, Zhang Z X. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere[J]. Journal of Hazardous Materials, 2016, 311: 237-245. |
| [33] | Cui P Y, Chen W Q, Wang J Q, et al. Numerical studies on issues of Re-independence for indoor airflow and pollutant dispersion within an isolated building[J]. Building Simulation, 2022, 15(7): 1259-1276. |
| [34] | Ma H X, Zhou X Y, Tominaga Y, et al. CFD simulation of flow fields and pollutant dispersion around a cubic building considering the effect of plume buoyancies[J]. Building and Environment, 2022, 208: 108640. |
| [35] | Jia H Y, Kikumoto H. Source term estimation in complex urban environments based on Bayesian inference and unsteady adjoint equations simulated via large eddy simulation[J]. Building and Environment, 2021, 193: 107669. |
| [36] | Wu J S, Liu Z, Yuan S Q, et al. Source term estimation of natural gas leakage in utility tunnel by combining CFD and Bayesian inference method[J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104328. |
| [37] | Tominaga Y, Stathopoulos T. CFD simulations of near-field pollutant dispersion with different plume buoyancies[J]. Building and Environment, 2018, 131: 128-139. |
| [38] | Ma D L, Tan W, Wang Q S, et al. Location of contaminant emission source in atmosphere based on optimal correlated matching of concentration distribution[J]. Process Safety and Environmental Protection, 2018, 117: 498-510. |
| [1] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [2] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [3] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [4] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [5] | 谷德银, 杨豪, 李昌树, 刘作华. 分形穿流桨搅拌槽内假塑性流体的混合行为[J]. 化工学报, 2025, 76(6): 2569-2579. |
| [6] | 蒋敏, 邵翔宇, 郑立刚, 高建良, 雷刚. 膜片压力对氢-空气混合气体泄爆过程的影响[J]. 化工学报, 2025, 76(6): 2770-2780. |
| [7] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| [8] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [9] | 吴与伦, 王振雷, 王昕. 基于对比学习的乙烯裂解炉运行工况识别方法[J]. 化工学报, 2025, 76(6): 2733-2742. |
| [10] | 李琳, 王明媚, 宋二伟, 王雯雯, 张耀昌, 王二强. 异戊二烯-正戊烷分离工艺的热力学分析及优化[J]. 化工学报, 2025, 76(6): 2549-2558. |
| [11] | 安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025. |
| [12] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [13] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [14] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [15] | 徐东亮, 赵彬彬, 孙逸玫, 刘婷婷, 刘筱然, 陈明功. 基于修正多孔介质模型的RPB模拟与流场特性研究[J]. 化工学报, 2025, 76(4): 1569-1582. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
