化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2722-2732.DOI: 10.11949/0438-1157.20241457
收稿日期:2024-12-16
修回日期:2025-01-18
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
叶昊天
作者简介:王一非(1999—),男,硕士研究生,yifeiwang@mail.dlut.edu.cn
基金资助:
Yifei WANG(
), Jingjie REN, Mingshu BI, Haotian YE(
)
Received:2024-12-16
Revised:2025-01-18
Online:2025-06-25
Published:2025-07-09
Contact:
Haotian YE
摘要:
由于氧化反应在化工行业存在的普遍性及其危险性,针对典型工艺环己烷氧化进行研究。首先利用Aspen Plus进行建模及动力学修正,修正前主产物中最大误差为28.56%,修正后主产物中最大误差为3.11%。使用遗传算法(GA),以Dow火灾爆炸指数(F&EI)、年总费用(TAC)和尾氧浓度为目标函数,对环己烷无催化氧化这一过程进行多目标优化,获得了Pareto前沿。优化结果表明,与原操作条件相比,新操作条件在维持尾氧浓度小于工业预警值3%的情况下,设备费用基本维持不变,操作费用减少了34.7%,F&EI指数从156降到76.66,危险程度从较危险降为较轻。
中图分类号:
王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732.
Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance[J]. CIESC Journal, 2025, 76(6): 2722-2732.
| 反应参数 | 数值 |
|---|---|
| 反应温度/K | 438.00 |
| 压力/MPa | 1.30 |
| 气相流率/(m3/h) | 6530.00 |
| 进料氧气体积分数/% | 21.00 |
| 有效体积/m3 | 82.24 |
表1 反应初始参数
Table 1 Initial reaction parameters
| 反应参数 | 数值 |
|---|---|
| 反应温度/K | 438.00 |
| 压力/MPa | 1.30 |
| 气相流率/(m3/h) | 6530.00 |
| 进料氧气体积分数/% | 21.00 |
| 有效体积/m3 | 82.24 |
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0265 | 7.2113 | 2.63 |
| 环己基过氧化氢 | 0.1806 | 0.1290 | -28.56 |
| 环己醇 | 0.0556 | 0.0477 | -14.13 |
| 环己酮 | 0.0254 | 0.0202 | -20.55 |
| 酸 | 0.0141 | 0.0069 | -50.85 |
| 酯类 | 0.0060 | 0.0030 | -49.48 |
表2 修正前动力学模型21%含氧量进料产物分布及误差
Table 2 Comparison of original kinetic model products (21% oxygen content feed)
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0265 | 7.2113 | 2.63 |
| 环己基过氧化氢 | 0.1806 | 0.1290 | -28.56 |
| 环己醇 | 0.0556 | 0.0477 | -14.13 |
| 环己酮 | 0.0254 | 0.0202 | -20.55 |
| 酸 | 0.0141 | 0.0069 | -50.85 |
| 酯类 | 0.0060 | 0.0030 | -49.48 |
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0157 | 7.1157 | 1.43 |
| 环己基过氧化氢 | 0.1826 | 0.1626 | -10.95 |
| 环己醇 | 0.0404 | 0.0394 | -12.38 |
| 环己酮 | 0.0247 | 0.0226 | -16.76 |
| 酸 | 0.0132 | 0.0101 | -23.48 |
| 酯类 | 0.0060 | 0.0020 | -66.67 |
表3 修正前动力学模型30%含氧量进料产物分布及误差
Table 3 Comparison of original kinetic model products (30% oxygen content feed)
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0157 | 7.1157 | 1.43 |
| 环己基过氧化氢 | 0.1826 | 0.1626 | -10.95 |
| 环己醇 | 0.0404 | 0.0394 | -12.38 |
| 环己酮 | 0.0247 | 0.0226 | -16.76 |
| 酸 | 0.0132 | 0.0101 | -23.48 |
| 酯类 | 0.0060 | 0.0020 | -66.67 |
| 修正因子Ai | 数值 |
|---|---|
| α1 | 14.25 |
| α2 | 0.65 |
| α3 | 9.00 |
| d4 | 30.00 |
| d5 | 13.00 |
表4 反应速率校正系数
Table 4 Reaction rate correction coefficient
| 修正因子Ai | 数值 |
|---|---|
| α1 | 14.25 |
| α2 | 0.65 |
| α3 | 9.00 |
| d4 | 30.00 |
| d5 | 13.00 |
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0265 | 7.0425 | 0.23 |
| 环己基过氧化氢 | 0.1806 | 0.1827 | 1.18 |
| 环己醇 | 0.0556 | 0.0556 | 0.06 |
| 环己酮 | 0.0254 | 0.0254 | 0.12 |
| 酸 | 0.0141 | 0.0128 | -10.13 |
| 酯类 | 0.0060 | 0.0056 | -6.28 |
表5 修正后动力学模型21%含氧量进料产物分布及误差
Table 5 Comparison of modified kinetic model products (21% oxygen content feed)
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0265 | 7.0425 | 0.23 |
| 环己基过氧化氢 | 0.1806 | 0.1827 | 1.18 |
| 环己醇 | 0.0556 | 0.0556 | 0.06 |
| 环己酮 | 0.0254 | 0.0254 | 0.12 |
| 酸 | 0.0141 | 0.0128 | -10.13 |
| 酯类 | 0.0060 | 0.0056 | -6.28 |
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0157 | 6.9953 | -0.29 |
| 环己基过氧化氢 | 0.1826 | 0.1883 | 3.11 |
| 环己醇 | 0.0404 | 0.0399 | -1.27 |
| 环己酮 | 0.0247 | 0.0246 | -0.60 |
| 酸 | 0.0132 | 0.0116 | -11.99 |
| 酯类 | 0.0060 | 0.0055 | -7.56 |
表6 修正后动力学模型30%含氧量进料产物分布及误差
Table 6 Comparison of modified kinetic model products (30% oxygen content feed)
| 组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
|---|---|---|---|
| 环己烷 | 7.0157 | 6.9953 | -0.29 |
| 环己基过氧化氢 | 0.1826 | 0.1883 | 3.11 |
| 环己醇 | 0.0404 | 0.0399 | -1.27 |
| 环己酮 | 0.0247 | 0.0246 | -0.60 |
| 酸 | 0.0132 | 0.0116 | -11.99 |
| 酯类 | 0.0060 | 0.0055 | -7.56 |
| F&EI范围 | 危险程度 |
|---|---|
| 1~60 | 最轻 |
| 61~96 | 较轻 |
| 97~127 | 中等 |
| 128~158 | 较危险 |
| ≥159 | 极危险 |
表7 F&EI指数危险程度分级
Table 7 F&EI Index hazard classification
| F&EI范围 | 危险程度 |
|---|---|
| 1~60 | 最轻 |
| 61~96 | 较轻 |
| 97~127 | 中等 |
| 128~158 | 较危险 |
| ≥159 | 极危险 |
| 操作参数 | 原操作条件 | α=0.2 | α=0.5(最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 451.98 | 451.99 | 451.98 |
| 1釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.20 |
| 1釜有效体积/m3 | 82.24 | 72.06 | 72.00 | 72.00 |
| 1釜进气量/(m3/h) | 4700.00 | 6484.68 | 5873.27 | 5600 |
| 1釜进气含氧量/% | 21.00 | 41.90 | 44.36 | 44.56 |
| 2釜温度/K | 442.65 | 451.93 | 451.89 | 452.00 |
| 2釜压力/MPa | 1.30 | 1.20 | 1.20 | 1.20 |
| 2釜有效体积/m3 | 82.24 | 72.09 | 76.25 | 85.84 |
| 2釜进气量/(m3/h) | 5200.00 | 5722.72 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 42.30 | 44.61 | 45.00 |
| 3釜温度/K | 439.00 | 450.07 | 450.23 | 451.73 |
| 3釜压力/MPa | 1.30 | 1.21 | 1.20 | 1.22 |
| 3釜有效体积/m3 | 82.24 | 85.95 | 83.36 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5928.06 | 5600.00 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 38.94 | 44.52 | 45.00 |
表8 不同权重下操作参数对比(考虑F&EI与TAC)
Table 8 Comparison of operating parameters under different weights (Considering F&EI and TAC)
| 操作参数 | 原操作条件 | α=0.2 | α=0.5(最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 451.98 | 451.99 | 451.98 |
| 1釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.20 |
| 1釜有效体积/m3 | 82.24 | 72.06 | 72.00 | 72.00 |
| 1釜进气量/(m3/h) | 4700.00 | 6484.68 | 5873.27 | 5600 |
| 1釜进气含氧量/% | 21.00 | 41.90 | 44.36 | 44.56 |
| 2釜温度/K | 442.65 | 451.93 | 451.89 | 452.00 |
| 2釜压力/MPa | 1.30 | 1.20 | 1.20 | 1.20 |
| 2釜有效体积/m3 | 82.24 | 72.09 | 76.25 | 85.84 |
| 2釜进气量/(m3/h) | 5200.00 | 5722.72 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 42.30 | 44.61 | 45.00 |
| 3釜温度/K | 439.00 | 450.07 | 450.23 | 451.73 |
| 3釜压力/MPa | 1.30 | 1.21 | 1.20 | 1.22 |
| 3釜有效体积/m3 | 82.24 | 85.95 | 83.36 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5928.06 | 5600.00 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 38.94 | 44.52 | 45.00 |
| 操作参数 | 原操作条件 | α=0 | α=0.2(最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 443.1 | 430.00 | 431.00 |
| 1釜压力/MPa | 1.30 | 1.66 | 1.51 | 1.56 |
| 1釜有效体积/m3 | 82.24 | 72.48 | 79.58 | 85.89 |
| 1釜进气量/(m3/h) | 4700.00 | 5826.06 | 5600.00 | 5600.00 |
| 1釜进气含氧量/% | 21.00 | 43.14 | 44.99 | 44.83 |
| 2釜温度/K | 442.65 | 435.92 | 430.13 | 431.00 |
| 2釜压力/MPa | 1.30 | 1.44 | 1.35 | 1.25 |
| 2釜有效体积/m3 | 82.24 | 80.77 | 85.96 | 86.99 |
| 2釜进气量/(m3/h) | 5200.00 | 5658.47 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 44.00 | 45.00 | 45.00 |
| 3釜温度/K | 439.00 | 451.90 | 451.90 | 450.50 |
| 3釜压力/MPa | 1.30 | 1.55 | 1.53 | 1.55 |
| 3釜有效体积/m3 | 82.24 | 85.97 | 84.24 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5623.81 | 5600.00 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 21.86 | 45.00 | 45.00 |
表9 不同权重下操作参数对比(考虑尾氧浓度与TAC)
Table 9 Comparison of operating parameters under different weights (Considering tail oxygen and TAC)
| 操作参数 | 原操作条件 | α=0 | α=0.2(最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 443.1 | 430.00 | 431.00 |
| 1釜压力/MPa | 1.30 | 1.66 | 1.51 | 1.56 |
| 1釜有效体积/m3 | 82.24 | 72.48 | 79.58 | 85.89 |
| 1釜进气量/(m3/h) | 4700.00 | 5826.06 | 5600.00 | 5600.00 |
| 1釜进气含氧量/% | 21.00 | 43.14 | 44.99 | 44.83 |
| 2釜温度/K | 442.65 | 435.92 | 430.13 | 431.00 |
| 2釜压力/MPa | 1.30 | 1.44 | 1.35 | 1.25 |
| 2釜有效体积/m3 | 82.24 | 80.77 | 85.96 | 86.99 |
| 2釜进气量/(m3/h) | 5200.00 | 5658.47 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 44.00 | 45.00 | 45.00 |
| 3釜温度/K | 439.00 | 451.90 | 451.90 | 450.50 |
| 3釜压力/MPa | 1.30 | 1.55 | 1.53 | 1.55 |
| 3釜有效体积/m3 | 82.24 | 85.97 | 84.24 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5623.81 | 5600.00 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 21.86 | 45.00 | 45.00 |
| 操作参数 | 原操作 条件 | α=0.2 | α=0.6 (最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 451.91 | 451.91 | 451.97 |
| 1釜压力/MPa | 1.30 | 1.40 | 1.21 | 1.21 |
| 1釜有效体积/m3 | 82.24 | 72.13 | 72.13 | 72.19 |
| 1釜进气量/(m3/h) | 4700.00 | 6889.14 | 6945.75 | 6929.90 |
| 1釜进气含氧量/% | 21.00 | 21.84 | 21.84 | 23.88 |
| 2釜温度/K | 442.65 | 430.12 | 435.06 | 447.57 |
| 2釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.27 |
| 2釜有效体积/m3 | 82.24 | 72.12 | 72.24 | 72.01 |
| 2釜进气量/(m3/h) | 5200.00 | 5649.47 | 6611.56 | 6913.77 |
| 2釜进气含氧量/% | 21.00 | 32.68 | 34.02 | 22.11 |
| 3釜温度/K | 439.00 | 451.90 | 451.90 | 451.94 |
| 3釜压力/MPa | 1.30 | 1.54 | 1.22 | 1.23 |
| 3釜有效体积/m3 | 82.24 | 85.90 | 85.89 | 72.16 |
| 3釜进气量/(m3/h) | 5300.00 | 5607.54 | 5613.06 | 5685.49 |
| 3釜进气含氧量/% | 21.00 | 28.84 | 38.94 | 20.72 |
表10 不同权重下操作参数对比(考虑F&EI与尾氧浓度)
Table 10 Comparison of operating parameters under different weights (Considering F&EI and tail oxygen)
| 操作参数 | 原操作 条件 | α=0.2 | α=0.6 (最优) | α=0.8 |
|---|---|---|---|---|
| 1釜温度/K | 439.00 | 451.91 | 451.91 | 451.97 |
| 1釜压力/MPa | 1.30 | 1.40 | 1.21 | 1.21 |
| 1釜有效体积/m3 | 82.24 | 72.13 | 72.13 | 72.19 |
| 1釜进气量/(m3/h) | 4700.00 | 6889.14 | 6945.75 | 6929.90 |
| 1釜进气含氧量/% | 21.00 | 21.84 | 21.84 | 23.88 |
| 2釜温度/K | 442.65 | 430.12 | 435.06 | 447.57 |
| 2釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.27 |
| 2釜有效体积/m3 | 82.24 | 72.12 | 72.24 | 72.01 |
| 2釜进气量/(m3/h) | 5200.00 | 5649.47 | 6611.56 | 6913.77 |
| 2釜进气含氧量/% | 21.00 | 32.68 | 34.02 | 22.11 |
| 3釜温度/K | 439.00 | 451.90 | 451.90 | 451.94 |
| 3釜压力/MPa | 1.30 | 1.54 | 1.22 | 1.23 |
| 3釜有效体积/m3 | 82.24 | 85.90 | 85.89 | 72.16 |
| 3釜进气量/(m3/h) | 5300.00 | 5607.54 | 5613.06 | 5685.49 |
| 3釜进气含氧量/% | 21.00 | 28.84 | 38.94 | 20.72 |
| 操作参数 | 原操作条件 | α=0.2; β=0.6 | α=0.6; β=0.7 | α=0.9; β=0.6(最优) | α=0.9; β=0.9 |
|---|---|---|---|---|---|
| 1釜温度/K | 439.00 | 448.79 | 451.25 | 443.78 | 451.98 |
| 1釜压力/MPa | 1.30 | 1.23 | 1.21 | 1.20 | 1.20 |
| 1釜有效体积/m3 | 82.24 | 72.12 | 72.00 | 86.00 | 84.89 |
| 1釜进气量/(m3/h) | 4700.00 | 6194.04 | 5600.00 | 5600.00 | 5600.00 |
| 1釜进气含氧量/% | 21.00 | 44.63 | 43.57 | 44.89 | 44.90 |
| 2釜温度/K | 442.65 | 445.49 | 443.96 | 447.46 | 451.76 |
| 2釜压力/MPa | 1.30 | 1.27 | 1.23 | 1.20 | 1.20 |
| 2釜有效体积/m3 | 82.24 | 72.03 | 72.25 | 85.98 | 85.98 |
| 2釜进气量/(m3/h) | 5200.00 | 5685.25 | 5600.00 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 44.12 | 44.56 | 45.00 | 45.00 |
| 3釜温度/K | 439.00 | 452.00 | 452.00 | 452.00 | 451.60 |
| 3釜压力/MPa | 1.30 | 1.49 | 1.54 | 1.43 | 1.20 |
| 3釜有效体积/m3 | 82.24 | 85.93 | 86.00 | 85.98 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5685.25 | 5600.03 | 5600.50 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 43.80 | 44.04 | 45.00 | 45.00 |
表11 不同权重下操作参数对比(考虑F&EI、TAC与尾氧浓度)
Table 11 Comparison of operating parameters under different weights (Considering F&EI, TAC and tail oxygen)
| 操作参数 | 原操作条件 | α=0.2; β=0.6 | α=0.6; β=0.7 | α=0.9; β=0.6(最优) | α=0.9; β=0.9 |
|---|---|---|---|---|---|
| 1釜温度/K | 439.00 | 448.79 | 451.25 | 443.78 | 451.98 |
| 1釜压力/MPa | 1.30 | 1.23 | 1.21 | 1.20 | 1.20 |
| 1釜有效体积/m3 | 82.24 | 72.12 | 72.00 | 86.00 | 84.89 |
| 1釜进气量/(m3/h) | 4700.00 | 6194.04 | 5600.00 | 5600.00 | 5600.00 |
| 1釜进气含氧量/% | 21.00 | 44.63 | 43.57 | 44.89 | 44.90 |
| 2釜温度/K | 442.65 | 445.49 | 443.96 | 447.46 | 451.76 |
| 2釜压力/MPa | 1.30 | 1.27 | 1.23 | 1.20 | 1.20 |
| 2釜有效体积/m3 | 82.24 | 72.03 | 72.25 | 85.98 | 85.98 |
| 2釜进气量/(m3/h) | 5200.00 | 5685.25 | 5600.00 | 5600.00 | 5600.00 |
| 2釜进气含氧量/% | 21.00 | 44.12 | 44.56 | 45.00 | 45.00 |
| 3釜温度/K | 439.00 | 452.00 | 452.00 | 452.00 | 451.60 |
| 3釜压力/MPa | 1.30 | 1.49 | 1.54 | 1.43 | 1.20 |
| 3釜有效体积/m3 | 82.24 | 85.93 | 86.00 | 85.98 | 85.99 |
| 3釜进气量/(m3/h) | 5300.00 | 5685.25 | 5600.03 | 5600.50 | 5600.00 |
| 3釜进气含氧量/% | 21.00 | 43.80 | 44.04 | 45.00 | 45.00 |
| [1] | 赵劲松, 粟镇宇, 贺丁, 等. 化工过程安全管理[M]. 北京: 化学工业出版社, 2021: 1-10. |
| Zhao J S, Su Z Y, He D, et al. Safety Management of Chemical Process[M]. Beijing: Chemical Industry Press, 2021: 1-10. | |
| [2] | 王杭州, 陈丙珍, 赵劲松, 等. 面向本质安全化的化工过程设计多稳态及其稳定性分析[M]. 北京: 清华大学出版社, 2017: 166-167. |
| Wang H Z, Chen B Z, Zhao J S, et al. Inherently Safer Design Oriented Analysis of Steady-state Multiplicity and Stability of Chemical Processes[M]. Beijing: Tsinghua University Press, 2017: 166-167. | |
| [3] | Swuste P, Theunissen J, Schmitz P, et al. Process safety indicators, a review of literature[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 162-173. |
| [4] | 赵劲松. 化工过程安全[M]. 北京: 化学工业出版社, 2015: 1-7. |
| Zhao J S. Chemical Process Safety[M]. Beijing: Chemical Industry Press, 2015: 1-7. | |
| [5] | Sanders R E. Chemical Process Safety[M]. 4th ed. Oxford·Waltham: Elsevier, 2015. |
| [6] | Kletz T. Inherently safer design: the growth of an idea[J]. Process Safety Progress, 1996: 15(1): 5-8. |
| [7] | Chen J R. An inherently safer process of cyclohexane oxidation using pure oxygen: an example of how better process safety leads to better productivity[J]. Process Safety Progress, 2004, 23(1): 72-81. |
| [8] | 周权. 环己烷无催化氧化工艺优化研究[D]. 大连: 大连理工大学, 2006. |
| Zhou Q. Study on optimization of cyclohexane non-catalytic oxidation process[D]. Dalian: Dalian University of Technology, 2006. | |
| [9] | 尹华清, 罗和安. 环己烷富氧氧化反应器内气相空间危险性研究[J]. 湖南大学学报(自然科学版), 2009, 36(5): 63-66. |
| Yin H Q, Luo H A. Study of the risks of gas phases inside the reator of cyclohexane oxidation with oxygen-enriched air[J]. Journal of Hunan University (Natural Sciences), 2009, 36(5): 63-66. | |
| [10] | 郑婷, 李秀喜, 曹丽琦. 基于CFD的环己烷无催化氧化反应工况分析[C]//2019年中国过程系统工程年会论文集. 杭州, 2019: 150-158. |
| Zheng T, Li X X, Cao L Q.Analysis of operating conditions of cyclohexane non-catalytic oxidation by CFD[C].Proceedings of the 2019 China Annual Conference on Process Systems Engineering.Hangzhou,China,2019:150-158. | |
| [11] | 李秀喜, 曹丽琦, 王兴. 环己烷氧化生产环己酮过程建模与参数分析[J]. 清华大学学报(自然科学版), 2018, 58(5): 523-528. |
| Li X X, Cao L Q, Wang X. Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(5): 523-528. | |
| [12] | Huo H H, Guo B R, Ma G X, et al. Recent progress in strategies to enhance the photocatalytic oxidation performance of cyclohexane[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113504. |
| [13] | Zhang X H, Chen Z, Chen J, et al. Liquid-phase oxidation of cyclohexane with air in a microreactor: kinetics and process intensification[J]. Chemical Engineering Science, 2024, 288: 119777. |
| [14] | 陈纪忠, 费黎明, 范镇, 等. 环己烷液相无催化剂的氧化动力学研究[J]. 化学反应工程与工艺, 1992, 8(3): 237-245. |
| Chen J Z, Fei L M, Fan Z, et al. A study on the kinetics of liquid phase oxidation of cyclohexane without catalyst[J]. Chemical Reaction Engineering and Technology, 1992, 8(3): 237-245. | |
| [15] | Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005. |
| [16] | Aspen Technology, Inc. Aspen Plus User Guide[EB/OL]. (2020-11-03). |
| [17] | 孙兰义. 化工过程模拟实训: Aspen Plus教程[M]. 2版. 北京: 化学工业出版社, 2017. |
| Sun L Y. Chemical Process Simulation Training: Aspen Plus Course[M]. 2nd ed. Beijing: Chemical Industry Press, 2017. | |
| [18] | Pan D T, Li G X, Su Y H, et al. Kinetic study for the oxidation of cyclohexanol and cyclohexanone with nitric acid to adipic acid[J]. Chinese Journal of Chemical Engineering, 2021, 29: 183-189. |
| [19] | Li G X, Liu S E, Dou X Y, et al. Synthesis of adipic acid through oxidation of K/A oil and its kinetic study in a microreactor system[J]. AIChE Journal, 2020, 66(9): e16289. |
| [20] | Pohorecki R, Moniuk W, Wierzchowski P T. Kinetic model of uncatalyzed oxidation of cyclohexane[J]. Chemical Engineering Research and Design, 2009, 87(3): 349-356. |
| [21] | Silke E J, Pitz W J, Westbrook C K, et al. Detailed chemical kinetic modeling of cyclohexane oxidation[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3761-3775. |
| [22] | Gao X M, Abdul Raman A A, Hizaddin H F, et al. Review on the inherently safer design for chemical processes: past, present and future[J]. Journal of Cleaner Production, 2021, 305: 127154. |
| [23] | AIChE. Dow's Fire & Explosion Index Hazard Classification Guide: AIChE/Dow's[M]. Hoboken, NJ, USA: John Wiley & Sons Inc, 1994 |
| [24] | Willett M. Oxygen sensing for industrial safety - evolution and new approaches[J]. Sensors, 2014, 14(4): 6084-6103. |
| [25] | 王兴. 环己烷无催化氧化反应过程模拟与关键参数分析[D]. 广州: 华南理工大学, 2013. |
| Wang X. Simulation and key parameters analysis of cyclohexane non-catalytic oxidation reaction process[D]. Guangzhou: South China University of Technology, 2013. | |
| [26] | Nelson D A, Kirkwood R L, Douglas J M. Conceptual design of chemical processes[J]. Advances in AI and Simulation, 1989,20:180-184. |
| [27] | Mei W G, Zhai R R, Zhao Y X, et al. Exergoeconomic analysis and multi-objective optimization using NSGA-Ⅱ in a novel dual-stage Selexol process of integrated gasification combined cycle[J]. Energy, 2024, 286: 129663. |
| [28] | Patro S G K, Sahu K K. Normalization: a preprocessing stage[J]. Iarjset, 2015: 20-22. |
| [29] | Abrahamsen E B, Milazzo M F, Selvik J T, et al. Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process[J]. Reliability Engineering & System Safety, 2020, 198: 106811. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [5] | 张豪豪, 郭莉, 李馨怡, 陈锦溢, 华超, 陆平. 隔板精馏塔的优化设计及动态控制研究进展[J]. 化工学报, 2025, 76(6): 2434-2450. |
| [6] | 李琳, 王明媚, 宋二伟, 王雯雯, 张耀昌, 王二强. 异戊二烯-正戊烷分离工艺的热力学分析及优化[J]. 化工学报, 2025, 76(6): 2549-2558. |
| [7] | 王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114. |
| [8] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| [9] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [10] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [11] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [12] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [13] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [14] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
| [15] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号