化工学报

• •    

双金属Ni2P/Fe2P/Fe2O3@NF异质界面材料以耦合机制催化析氧反应并促进整体水分解

李佳润1(), 骆勇名1,2, 韦思辰1, 赵亚娟1(), 何盈盈1()   

  1. 1.西安建筑科技大学化学与化工学院,陕西 西安 710055
    2.陕西汉江药业集团股份有限公司,陕西 汉中 723000
  • 收稿日期:2025-10-09 修回日期:2025-11-12 出版日期:2025-12-03
  • 通讯作者: 赵亚娟,何盈盈
  • 作者简介:李佳润(2001—),女,硕士研究生,2606884041@qq.com
  • 基金资助:
    国家自然科学基金项目(52270167)

Bimetallic Ni2P/Fe2P/Fe2O3@NF heterostructure catalyzes oxygen evolution reaction through coupled mechanism and promotes overall water splitting

Jiarun LI1(), Yongming LUO1,2, Sichen WEI1, Yajuan ZHAO1(), Yingying HE1()   

  1. 1.School of Chemistry and Chemical Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, Shaanxi, China
    2.Shaanxi Hanjiang Pharmaceutical Group Co. , Ltd. , Hanzhong 723000, Shaanxi, China
  • Received:2025-10-09 Revised:2025-11-12 Online:2025-12-03
  • Contact: Yajuan ZHAO, Yingying HE

摘要:

电解水是有潜力的规模化制备氢技术之一,而开发高活性低成本的氧析出反应(OER)和整体水分解催化剂是关键。本研究通过K2FeO4分解与Fe3+刻蚀泡沫镍(NF)制备了具有丰富异质界面的NiFe-LDH/Fe2O3@NF前驱体,经磷化后得到珊瑚状的双金属Ni2P/Fe2P/Fe2O3@NF复合材料。表征结果证实其结构中有丰富的异质界面和微米级通道。OER催化机制研究显示其为耦合的吸附演化机制(AEM)和晶格氧机制(LOM)。DFT计算表明磷化处理优化了活性氧中间体的吸附能,降低了决速步骤的能垒,并使Ni 3d轨道和Fe 3d轨道的态密度重叠程度增强,促进了双金属位点Ni2+®Fe3+之间的电子转移和Ni催化中心的形成,从而提升了材料的OER性能和稳定性。该材料在10和50 mA·cm-2电流密度下的OER过电位仅分别为203和230 mV,且在10和500 mA·cm-2的电流密度下均显示良好的稳定性。该材料同时展现出优异的氢析出反应(HER)活性,构建的全水解系统在1.58 V槽电压下即可驱动10 mA·cm-2电流密度,展现出良好的双催化性能和稳定性。

关键词: 电解, 析氧反应, OER机理, 异质界面, 铁基过渡金属磷化物, 催化剂, 制氢

Abstract:

Water electrolysis is one promising technology for large-scale hydrogen production, in which developing high-activity and low-cost catalysts for oxygen evolution reaction (OER) and overall water splitting is the key. In this study, a NiFe-LDH/Fe2O3@NF precursor with rich heterointerfaces was synthesized via K2FeO4 decomposition and Fe3+ etching of nickel foam (NF), and coral-like bimetallic Ni2P/Fe2P/Fe2O3@NF was obtained after phosphidation. Material characterization confirmed the presence of abundant heterointerfaces and micrometer-scale channels in Ni2P/Fe2P/Fe2O3@NF. Study on the catalytic mechanism of OER reveals that is a coupled adsorption evolution mechanism (AEM) and lattice oxygen mechanism (LOM). Density functional theory (DFT) calculations indicate that the phosphating treatment optimizes the adsorption energy of reactive oxygen intermediates, lowers the energy barrier of the rate-determining step, and enhances the overlap between the density of states of Ni 3d and Fe 3d orbitals. This facilitates electron transfer across the bimetallic Ni²⁺–Fe³⁺ sites and promotes the formation of the Ni catalytic center, thereby improving both the oxygen evolution reaction (OER) performance and the structural stability of the material. The OER overpotential of this material is only 203 and 230 mV at current densities of 10 and 50 mA·cm-2, respectively, and it also demonstrates good stability even at high current densities of up to 500 mA·cm-2. This material also exhibits excellent hydrogen evolution reaction (HER) activity. When employed it as both anode and cathode, the overall electrolyzer only needs 1.58 V cell voltage to achieve 10 mA cm-2 current density and without obvious degradation after 40 h test, highlighting its superior bifunctional performance and durability.

Key words: electrolysis, oxygen evolution reaction, OER mechanism, heterogeneous interface, iron-based transition metal phosphide, catalyst, hydrogen production

中图分类号: