• •
收稿日期:2025-10-20
修回日期:2025-12-15
出版日期:2026-01-07
通讯作者:
张金亚
作者简介:王辰辰(2001—),男,博士研究生,1090832829@qq.com
基金资助:
Chenchen WANG(
), Jinya ZHANG(
), Na SUN
Received:2025-10-20
Revised:2025-12-15
Online:2026-01-07
Contact:
Jinya ZHANG
摘要:
为提升液态空气储能(LAES)系统中基于固体蓄冷材料的填充床性能,缓解其在释冷过程中因出口温度显著升高所造成的系统效率下降及运行不稳定性问题,提出一种优化的蓄冷填充床运行流程,并研究了保温材料热阻对斜温层分布与漏冷负荷的影响。模拟结果表明:引入预冷流程可有效抑制释冷阶段的温升,当预冷比为4时,出口温度上升幅度被控制在15 K以内,填充床的㶲效率提升至88.04%;同时,保温材料热阻在约15 (m²·K)/W时表现出良好的工程经济性。在此基础上,搭建了蓄冷填充床实验平台,验证了优化流程的有效性,并将其集成于50 kW级LAES系统中进行全流程实验。实验结果表明,集成优化蓄冷系统后,LAES系统的蓄冷效率达到94.45%,系统往返效率提高至55.53%。
中图分类号:
王辰辰, 张金亚, 孙娜. 固体蓄冷填充床性能提升及保冷特性研究[J]. 化工学报, DOI: 10.11949/0438-1157.20251171.
Chenchen WANG, Jinya ZHANG, Na SUN. Study on performance enhancement and cold retention characteristics of solid packed bed cold energy storage[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251171.
| 设置参数 | 值 | 设置参数 | 值 |
|---|---|---|---|
| 入口边界/(kg/h) | 510 | 填料体积热容/[kJ/m3·K] | 1885 |
| 出口边界/kPa | 101.3 | 填料导热率/[W/(m·K)] | 3.17 |
| 环境温度/K | 300 | 外侧对流换热系数/[W/m2·K] | 15 |
| 时间步长/s | 0.1 | 填充床直径/m | 1.8 |
| 填充床填料高度/m | 5 | 静置/充冷/释冷时间/h | 4 |
| 预冷时间/h | 4~24 | 填料密度/(kg/m3) | 2700 |
表1 求解器设置
Table 1 Solver Settings
| 设置参数 | 值 | 设置参数 | 值 |
|---|---|---|---|
| 入口边界/(kg/h) | 510 | 填料体积热容/[kJ/m3·K] | 1885 |
| 出口边界/kPa | 101.3 | 填料导热率/[W/(m·K)] | 3.17 |
| 环境温度/K | 300 | 外侧对流换热系数/[W/m2·K] | 15 |
| 时间步长/s | 0.1 | 填充床直径/m | 1.8 |
| 填充床填料高度/m | 5 | 静置/充冷/释冷时间/h | 4 |
| 预冷时间/h | 4~24 | 填料密度/(kg/m3) | 2700 |
| 参数 | 值 | |
|---|---|---|
| 罐体高度/m | 4.5 | |
| 罐体直径/m | 1.8 | |
| 填料重量/kg | ~13000 | |
| 填料高度/m | ~2.5 | |
| 平均孔隙率 | ~0.34 | |
保温层 厚度/m | 二烯烃(内层) | 0.3 |
| 橡塑(外层) | 0.2 | |
表2 填充床相关信息
Table 2 Information related to the solid packed bed
| 参数 | 值 | |
|---|---|---|
| 罐体高度/m | 4.5 | |
| 罐体直径/m | 1.8 | |
| 填料重量/kg | ~13000 | |
| 填料高度/m | ~2.5 | |
| 平均孔隙率 | ~0.34 | |
保温层 厚度/m | 二烯烃(内层) | 0.3 |
| 橡塑(外层) | 0.2 | |
| [1] | Li D, Duan L Q. Techno-economic analysis of solar aided liquid air energy storage system with a new air compression heat utilization method[J]. Energy Conversion and Management, 2023, 278: 116729. |
| [2] | Hunt J D, Zakeri B, Nascimento A, et al. Compressed air seesaw energy storage: A solution for long-term electricity storage[J]. Journal of Energy Storage, 2023, 60: 106638. |
| [3] | Vecchi A, Sciacovelli A. Long-duration thermo-mechanical energy storage - Present and future techno-economic competitiveness[J]. Applied Energy, 2023, 334: 120628. |
| [4] | Mukherjee S S, Meshram H A, Rakshit D, et al. A comparative study of sensible energy storage and hydrogen energy storage apropos to a concentrated solar thermal power plant[J]. Journal of Energy Storage, 2023, 61: 106629. |
| [5] | Vecchi A, Li Y L, Ding Y L, et al. Liquid air energy storage (LAES): a review on technology state-of-the-art, integration pathways and future perspectives[J]. Advances in Applied Energy, 2021, 3: 100047. |
| [6] | Qi M, Kim M, Dat Vo N, et al. Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage[J]. Applied Energy, 2022, 314: 118965. |
| [7] | Park J H, Heo J Y, Lee J I. Techno-economic study of nuclear integrated liquid air energy storage system[J]. Energy Conversion and Management, 2022, 251: 114937. |
| [8] | Sciacovelli A, Smith D, Navarro M E, et al. Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world[J]. Journal of Energy Resources Technology, 2018, 140(2): 020908. |
| [9] | Sciacovelli A, Vecchi A, Ding Y. Liquid air energy storage (LAES) with packed bed cold thermal storage–From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98. |
| [10] | An B L, Chen J X, Deng Z, et al. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage[J]. Energy Conversion and Management, 2020, 226: 113520. |
| [11] | 赵稳勇. LNG加气站市场分析及发展布局[J]. 石油化工管理干部学院学报, 2025, 27(2): 38-41. |
| Zhao W Y. Market analysis and development planning of LNG refueling stations[J]. Journal of Sinopec Management Institute, 2025, 27(2): 38-41. | |
| [12] | 杜旭, 陈煜, 巨永林. 液化天然气(LNG)的长距离输送及其冷能利用[J]. 化工学报, 2018, 69(S2): 442-449. |
| Du X, Chen Y, Ju Y L. Long-distance transportation of liquefied natural gas (LNG) and cold energy utilization[J]. CIESC Journal, 2018, 69(S2): 442-449. | |
| [13] | 向腾龙, 王治红, 汪贵, 等. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413. |
| Xiang T L, Wang Z H, Wang G, et al. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413. | |
| [14] | 卢昕悦, 陈锐莹, 姜夏雪, 等. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| Lu X Y, Chen R Y, Jiang X X, et al. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy[J]. CIESC Journal, 2024, 75(9): 3297-3309. | |
| [15] | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
| Wang C, Zhe X H, Zhang X S. Thermodynamic study of liquid air energy storage with air purification unit[J]. CIESC Journal, 2020, 71(S1): 23-30. | |
| [16] | Li Y L, Cao H, Wang S H, et al. Load shifting of nuclear power plants using cryogenic energy storage technology[J]. Applied Energy, 2014, 113: 1710-1716. |
| [17] | Chen J X, An B L, Yang L W, et al. Construction and optimization of the cold storage process based on phase change materials used for liquid air energy storage system[J]. Journal of Energy Storage, 2021, 41: 102873. |
| [18] | Chai L, Wang L, Liu J, et al. Performance study of a packed bed in a closed loop thermal energy storage system[J]. Energy, 2014, 77: 871-879. |
| [19] | 张赵雪, 李正宇, 崔文慧, 等. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| Zhang Z X, Li Z Y, Cui W H, et al. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon-liquid nitrogen[J]. CIESC Journal, 2025, 76(4): 1731-1741. | |
| [21] | Liao Z R, Zhong H, Xu C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: 115132. |
| [22] | Guo L N, Ji W, Gao Z Z, et al. Dynamic characteristics analysis of the cold energy transfer in the liquid air energy storage system based on different modes of packed bed[J]. Journal of Energy Storage, 2021, 40: 102712. |
| [23] | Guo L N, Ji W, Fan X Y, et al. Experimental analysis of packed bed cold energy storage in the liquid air energy storage system[J]. Journal of Energy Storage, 2024, 82: 110282. |
| [24] | 孙潇, 罗志斌, 蔡春荣, 等. 不同长径比填充床蓄冷器储释冷特性研究[J]. 太阳能学报, 2024, 45(10): 745-751. |
| Sun X, Luo Z B, Cai C R, et al. Study on cold storage characteristics of packed bed regenerator with different aspect ratio[J]. Acta Energiae Solaris Sinica, 2024, 45(10): 745-751. | |
| [25] | Morgan R, Rota C, Pike-Wilson E, et al. The modelling and experimental validation of a cryogenic packed bed regenerator for liquid air energy storage applications[J]. Energies, 2020, 13(19): 5155. |
| [26] | Lee I, You F Q. Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy[J]. Applied Energy, 2019, 242: 168-180. |
| [27] | Wang P Z, Zhao P, Xu W P, et al. Performance analysis of a combined heat and compressed air energy storage system with packed bed unit and electrical heater[J]. Applied Thermal Engineering, 2019, 162: 114321. |
| [28] | 颜成辉, 谢应明, 庞治海, 等. 泡沫多孔材料对R134a水合物蓄冷的强化研究[J]. 化工学报, 2025, 76(6): 3084-3092. |
| Yan C H, Xie Y M, Pang Z H, et al. Study on strengthening of cold storage of R134a hydrate by foamed porous materials[J]. CIESC Journal, 2025, 76(6): 3084-3092. | |
| [29] | Peng H, Li R, Ling X, et al. Modeling on heat storage performance of compressed air in a packed bed system[J]. Applied Energy, 2015, 160: 1-9. |
| [30] | Zou J L, He F, Qi Y Y, et al. Thermal performance improvement of thermal energy storage systems by employing a contrastive experiment[J]. Case Studies in Thermal Engineering, 2023, 41: 102647. |
| [1] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [2] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [3] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [4] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [5] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [6] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [7] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [8] | 吴迪, 胡斌, 姜佳彤. R1233zd(E)高温热泵实验研究与应用分析[J]. 化工学报, 2025, 76(S1): 377-383. |
| [9] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [10] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [11] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [12] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [13] | 沙鑫权, 胡然, 丁磊, 蒋珍华, 吴亦农. 空间用单机两级有阀线性压缩机研制及测试[J]. 化工学报, 2025, 76(S1): 114-122. |
| [14] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [15] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号