CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3307-3319.DOI: 10.11949/0438-1157.20190281
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jing YANG1(),Wei WANG1(),Shuo ZHANG1,Chunfang SONG2,Yujia TANG1
Received:
2019-03-25
Revised:
2019-05-17
Online:
2019-09-05
Published:
2019-09-05
Contact:
Wei WANG
通讯作者:
王维
作者简介:
杨菁(1995—),女,硕士研究生,基金资助:
CLC Number:
Jing YANG, Wei WANG, Shuo ZHANG, Chunfang SONG, Yujia TANG. Multiphysics conjugated model for freeze-drying of liquid solution assisted by wave-absorbing material[J]. CIESC Journal, 2019, 70(9): 3307-3319.
杨菁, 王维, 张朔, 宋春芳, 唐宇佳. 吸波材料辅助的液体物料微波冷冻干燥多物理场耦合模型[J]. 化工学报, 2019, 70(9): 3307-3319.
Add to citation manager EndNote|Ris|BibTeX
Parameter | Value | Ref |
---|---|---|
c b /(J/(kg·K)) | 1200 | default① |
c i /(J/(kg·K)) | 1930 | [ |
c s /(J/(kg·K)) | 1310 | [ |
c v /(J/(kg·K)) | 1886 | [ |
e b | 0.5 | default① |
e i | 0.97 | [ |
e s | 0.6 | [ |
ΔH /(J/kg) | 2.839×106 | [ |
K r/s-1 | 300(S 0=1.0)/30(S 0=0.28) | [ |
? | 0.8798(S 0=1.0)/0.9631(S 0=0.28) | Exp. |
ε r,b ' | -12.36+0.087T | [ |
ε r,i ' | 3.2 | [ |
ε r,s ' | 2.42894+0.00385T(℃) | Exp. |
ε r,v ' | 1 | [ |
ε r,b″ | 27.99 | [ |
ε r,i″ | 0.003 | [ |
ε r,s″ | 0.22+0.00038T(℃) | Exp. |
ε r,v″ | 0 | [ |
λ b /(W/(m·K)) | 450(300/T)0.75 | default① |
λ i /(W/(m·K)) | 2.22 | [ |
λ s /(W/(m·K)) | 2.64 | [ |
λ v /(W/(m·K)) | 0.022 | [ |
μ r | 1 | — |
μ v /(kg/(m·s)) | 0.011(T/273)1.5/(T+961) | [ |
ρ b /(kg/m3) | 3200 | default① |
ρ i /(kg/m3) | 913 | [ |
ρ s /(kg/m3) | 1489 | [ |
Table 1 Input parameters used in simulation
Parameter | Value | Ref |
---|---|---|
c b /(J/(kg·K)) | 1200 | default① |
c i /(J/(kg·K)) | 1930 | [ |
c s /(J/(kg·K)) | 1310 | [ |
c v /(J/(kg·K)) | 1886 | [ |
e b | 0.5 | default① |
e i | 0.97 | [ |
e s | 0.6 | [ |
ΔH /(J/kg) | 2.839×106 | [ |
K r/s-1 | 300(S 0=1.0)/30(S 0=0.28) | [ |
? | 0.8798(S 0=1.0)/0.9631(S 0=0.28) | Exp. |
ε r,b ' | -12.36+0.087T | [ |
ε r,i ' | 3.2 | [ |
ε r,s ' | 2.42894+0.00385T(℃) | Exp. |
ε r,v ' | 1 | [ |
ε r,b″ | 27.99 | [ |
ε r,i″ | 0.003 | [ |
ε r,s″ | 0.22+0.00038T(℃) | Exp. |
ε r,v″ | 0 | [ |
λ b /(W/(m·K)) | 450(300/T)0.75 | default① |
λ i /(W/(m·K)) | 2.22 | [ |
λ s /(W/(m·K)) | 2.64 | [ |
λ v /(W/(m·K)) | 0.022 | [ |
μ r | 1 | — |
μ v /(kg/(m·s)) | 0.011(T/273)1.5/(T+961) | [ |
ρ b /(kg/m3) | 3200 | default① |
ρ i /(kg/m3) | 913 | [ |
ρ s /(kg/m3) | 1489 | [ |
1 | Liapis A I , Bruttini R . Freeze drying[M]//Mujumdar A S. Handbook of Industrial Drying. New York: Marcel Dekker, 2015: 259-282. |
2 | Nail S L , Jiang S , Chongprasert S , et al . Fundamentals of freeze-drying[M] //Nail S L , Akers M J . Development and Manufacture of Protein Pharmaceuticals. New York: Kluwer Academic & Plenum Publishers, 2002: 281-361. |
3 | Wang W , Chen G . Freeze drying with dielectric-material-assisted microwave heating[J]. AIChE Journal, 2007, 53(12): 3077-3088. |
4 | Wang W , Chen M , Chen G . Issues in freeze drying of aqueous solutions[J]. Chin. J. Chem. Eng., 2012, 20(3): 551-559. |
5 | Capozzi L C , Pisano R . Looking inside the ‘black box’: freezing engineering to ensure the quality of freeze-dried biopharmaceuticals[J]. Eur. J. Pharm. Biopharm., 2018, 129(8): 58-65. |
6 | Goshima H , Do G , Nakagawa K . Impact of ice morphology on design space of pharmaceutical freeze-drying[J]. J . Pharm. Sci., 2016, 105(6): 1920-1933. |
7 | Sitar A , Skrlec K , Voglar J , et al . Effects of controlled nucleation on freeze-drying lactose and mannitol aqueous solutions[J]. Drying Technol., 2018, 36(10): 1263-1272. |
8 | Bexiga N M , Bloise A C , Alencar A M , et al . Freeze-drying of ovalbumin-loaded carboxymethyl chitosan nanocapsules: impact of freezing and annealing procedures on physicochemical properties of the formulation during dried storage[J]. Drying Technol., 2018, 36(4): 400-417. |
9 | Pikal M J . Freeze drying[M]//Swarbrick J. Encyclopedia of Pharmaceutical Technology. 3nd ed. New York: Informa Healthcare, 2007: 1807-1833. |
10 | Wolff E , Gibert H , Rodolphe F . Vacuum freeze-drying kinetics and modelling of a liquid in a vial[J]. Chem. Eng. Process., 1989, 25(3): 153-158. |
11 | Hottot A , Vessot S , Andrieu J . A direct characterization method of the ice morphology. relationship between mean crystals size and primary drying times of freeze-drying processes[J]. Drying Technol., 2004, 22(8): 2009-2021. |
12 | Wang W , Chen G . Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect[J]. Chem. Eng. Sci., 2005, 60(23): 6542-6550. |
13 | 于凯, 王维, 潘艳秋, 等 . 初始非饱和多孔物料对冷冻干燥过程的影响[J]. 化工学报, 2013, 64 (9): 3110-3116. |
Yu K , Wang W , Pan Y Q , et al . Effect of initially unsaturated porous frozen material on freeze-drying[J]. CIESC Journal, 2013, 64 (9): 3110-3116. | |
14 | Wang W , Hu D B , Pan Y Q , et al . Freeze-drying of aqueous solution frozen with prebuilt pores[J]. AIChE Journal, 2015, 61(6): 2048-2057. |
15 | Ambros S , Mayer R , Schumann B , et al . Microwave-freeze drying of lactic acid bacteria: Influence of process parameters on drying behavior and viability[J]. Innov. Food Sci. Emerg. Technol., 2018, 48(4): 90-98. |
16 | Ma Y H , Peltre P R . Freeze dehydration by microwave energy[J]. AIChE Journal, 1975, 21(2): 335-344. |
17 | Duan X , Zhang M , Mujumdar A S , et al . Microwave freeze drying of sea cucumber (Stichopus japonicus)[J]. J. Food Eng., 2010, 96(4): 491-497. |
18 | Wang R , Zhang M , Mujumdar A S . Effect of food ingredient on microwave freeze drying of instant vegetable soup[J]. LWT - Food Sci. Technol., 2010, 43(7): 1144-1150. |
19 | Wang W , Chen G . Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution[J]. Drying Technol., 2003, 21(6): 995-1017. |
20 | Wang W , Chen G . Freeze drying with dielectric-material-assisted microwave heating[J]. AIChE Journal, 2007, 53(12): 3077-3088. |
21 | 赵言冰 . 微波冷冻干燥过程传热传质的数值模拟[D]. 南京:东南大学, 2004. |
Zhao Y B . Numerical simulation of heat and mass transfer in microwave freeze-drying process[D]. Nanjing: Southeast University, 2004. | |
22 | 段续, 闫莎莎, 曾凡莲, 等 . 基于介电特性的白蘑菇微波冻干传热传质模拟[J]. 现代食品科技, 2016, 32(6): 177-182. |
Duan X , Yan S S , Zeng F L , et al . Simulation of heat and mass transfer during microwave freeze drying of white mushrooms based on dielectric property[J]. Modern Food Sci. Technol., 2016, 32(6): 177-182. | |
23 | Halder A , Dhall A , Datta A K . An improved, easily implementable, porous media based model for deep-fat frying(Part I): Model development and input parameters[J]. Food Bioprod. Process., 2007, 85(3): 209-219. |
24 | Warning A D , Arquiza J M R , Datta A K . A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying[J]. Food Bioprod. Process., 2015, 94(2): 637-648. |
25 | Halder A , Dhall A , Datta A K . Modeling transport in porous media with phase change: applications to food processing[J]. J.Heat Transf.-Trans.ASME, 2011, 133(3): 031010. |
26 | Meda V , Orsat V , Raghavan V . Microwave heating and the dielectric properties of foods[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 63-75. |
27 | Pu G Y , Song G L , Song C F , et al . Analysis of thermal effect using coupled hot-air and microwave heating at different position of potato[J]. Innov. Food Sci. Emerg. Technol., 2017, 41(3): 244-250. |
28 | Chen F , Warning A D , Datta A K , et al . Susceptors in microwave cavity heating: modeling and experimentation with a frozen pie[J]. J. Food Eng., 2017, 195(4): 191-205. |
29 | Bird R B , Stewart W E , Lightfoot E N . Transport Phenomena[M]. New York: John Willey & Sons, 2002: 488-508. |
30 | 张朔, 王维, 李强强, 等 . 具有预制孔隙的维生素C水溶液微波冷冻干燥[J]. 化工学报, 2019, 70(6): 2129-2138. |
Zhang S , Wang W , Li Q Q , et al . Microwave freeze-drying of vitamin C solution frozen with preformed pores[J]. CIESC Journal, 2019, 70(6): 2129-2138. | |
31 | Dong S , Zhang X H , Zhang D Y , et al . Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics [J]. J.Eur.Ceram. Soc., 2018, 38(1): 29-39. |
32 | 赵延强, 王维, 潘艳秋, 等 . 具有初始孔隙的多孔物料冷冻干燥[J]. 化工学报, 2015, 66(2): 504-511. |
Zhao Y Q , Wang W , Pan Y Q , et al . Freeze-drying of porous frozen material with initial porosity[J]. CIESC Journal, 2015, 66(2): 504-511. | |
33 | Polaert I , Benamara N , Tao J , et al . Dielectric properties measurement methods for solids of high permittivities under microwave frequencies and between 20 and 250℃[J]. Chem. Eng. Process., 2017, 122(12): 339-345. |
34 | Song C F , Sang T , Li Z F , et al . Dielectric properties of blackberries as related to microwave drying control[J]. Int.J.Food Eng., 2017, 13(12): 1-8. |
35 | 牛利娇, 王维, 潘思麒, 等 . 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. |
Niu L J , Wang W , Pan S Q , et al . Multiphase transport model for freeze-drying of porous media with prefabricated porosity [J]. CIESC Journal, 2017, 68(5): 1833-1844. | |
36 | Nakagawa K , Hottot A , Vessot S , et al . Modeling of freezing steps during freeze-drying of drugs in vials[J]. AIChE Journal, 2007, 53(5): 1362-1372. |
37 | Chen M , Wang W , Pan Y Q , et al . 1D and 2D numerical verification on freeze drying of initially porous material frozen from aqueous solution[C]//Chen X D, Mujumdar A S. Proc.18th Intern. Drying Symp. Xiamen, China: XMU, 2012 |
38 | Geankoplis C J . Transport Processes and Unit Operations[M]. 3nd ed.NJ: Englewood Cliffs, 1993: 462-466. |
39 | Warning A , Dhall A , Mitrea D , et al . Porous media based model for deep-fat vacuum frying potato chips[J]. J. Food Eng., 2012, 110(3): 428-440. |
40 | Edmonton B . Brook Taylor[M] // Gowers T , Barrow-Green J , Leader I . The Princeton Companion to Mathematics. Princeton: Princeton University Press, 2008: 745-746. |
41 | Murphy D M , Koop T . Review of the vapour pressures of ice and super cooled water for atmospheric applications [J]. Q. J. R. Meteorol. Soc., 2005, 131(608): 1539-1565. |
42 | Eckert E R G , Drake R M . Thermophysical Properties, Analysis of Heat and Mass Transfer[M]. New York: McGraw-Hill, 1987: 767-783. |
43 | Liley P E . Physical and chemical data[M] // Perry H R , Green D W , Maloney J O . Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill, 1997: 40-304. |
44 | Tang J . Dielectric properties of foods[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 22-40. |
45 | Zhu H C , Gulati T , Datta A K , et al . Microwave drying of spheres: coupled electromagnetics-multiphase transport modeling with experimentation(Part Ⅰ): Model development and experimental methodology[J]. Food Bioprod. Process., 2015, 96(4): 314-325. |
46 | Basak T , Aparna K , Meenakshi A , et al . Effect of ceramic supports on microwave processing of porous food samples[J]. Int. J. Heat Mass Transf., 2006, 49(23/24): 4325-4339. |
47 | Wang W , Hu D P , Pan Y Q , et al . Numerical investigation on freeze-drying of aqueous material frozen with pre-built pores[J]. Chin.J. Chem.Eng., 2016, 24(1): 116-125. |
48 | Idelchik I E . General information and element of aerodynamics and hydraulic of pressure systems[M] //Steinberg M O , Malyavskaya G R , Martynenko O G . Handbook of Hydraulic Resistance. Florida: CRC Press, 1994: 9-12. |
49 | Lide D R . Handbook of Data on Organic Compounds[M]. Florida: CRC Press, 1994: 3338. |
50 | 李恒乐, 王维, 李强强, 等 . 具有预制孔隙多孔物料的冷冻干燥[J]. 化工学报, 2016, 67(7): 2857-2863. |
Li H L , Wang W , Li Q Q , et al . Freeze-drying of porous frozen material with prefabricated porosity [J]. CIESC Journal, 2016, 67(7): 2857-2863. | |
51 | 崔政伟, 陈丽君, 宋春芳, 等 . 热风微波耦合干燥技术和设备的研究进展[J]. 食品与生物技术学报, 2014, 33(11): 1121-1128. |
Cui Z W , Chen L J , Song C F , et al . Advances in coupled hot-air and microwave drying technique and equipment[J]. J . Food Sci. Biotech., 2014, 33(11): 1121-1128. | |
52 | Hossan M R , Byun D , Dutta P . Analysis of microwave heating for cylindrical shaped objects[J]. Int.J. Heat Mass Transf., 2010, 53(23/24): 5129-5138. |
53 | Knoerzer K , Regier M , Schubert H . A computational model for calculating temperature distributions in microwave food applications[J]. Innov. Food Sci. Emerg. Technol., 2008, 9(3): 374-384. |
54 | 陈又鲜 . 微波炉电磁场仿真设计匹配研究[D]. 成都: 电子科技大学, 2013. |
Chen Y X . Research about simulation design match of elecromagnetic field in microwave oven[D]. Chengdu: University of Electronic Science and Technology of China, 2013. | |
55 | 谢晓影, 乔秀臣 . 微波烧结的“热点”形成机制[J]. 微波学报, 2016, 32(5): 84-88. |
Xie X Y , Qiao X C . Mechanism of “hot spot” generation in microwave sintering process[J]. Journal of Microwaves, 2016, 32(5): 84-88. | |
56 | Regier M , Schubert H . Introducing microwave processing of food: principles and technologies[M] //Schubert H , Regier M . The Microwave Processing of Foods. Cambridge: Woodhead, 2005: 3-20. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[7] | Di WU, Bin HU, Ruzhu WANG, Junyu LIANG. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system [J]. CIESC Journal, 2023, 74(S1): 45-52. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||