CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3967-3975.DOI: 10.11949/0438-1157.20190480
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xinchao XU(),Pengfei TIAN,Jing XU(),Yifan HAN
Received:
2019-05-07
Revised:
2019-08-14
Online:
2019-10-05
Published:
2019-10-05
Contact:
Jing XU
通讯作者:
徐晶
作者简介:
徐新潮(1988—),男,博士研究生,基金资助:
CLC Number:
Xinchao XU, Pengfei TIAN, Jing XU, Yifan HAN. Density functional study of selective oxidation of ethanol over silver catalysts[J]. CIESC Journal, 2019, 70(10): 3967-3975.
徐新潮, 田鹏飞, 徐晶, 韩一帆. Ag表面乙醇选择性催化氧化的密度泛函理论研究[J]. 化工学报, 2019, 70(10): 3967-3975.
Add to citation manager EndNote|Ris|BibTeX
吸附物种 | Ag(111) | Ag(211) | |||
---|---|---|---|---|---|
吸附位 | 结合能/(kJ/mol) | 吸附位 | 结合能/(kJ/mol) | ||
CH3CH2OH | O-top | -14.4 | O-top | -18.3 | |
O2 | O-brg | 1.9 | O-4f | -49.0 | |
O | fcc | -339.4 | O-4f | -379.8 | |
H | fcc | -197.1 | fcc | -219.2 | |
OH | O-fcc | -240.4 | fcc | -271.2 | |
H2O | O-top | -8.7 | O-top | -17.3 | |
CH3CH2O | O-top | -101.9 | O-top | -150.0 | |
CH3CHOH | Cα-top | -41.4 | Cα-top | -76.9 | |
CH2CH2OH | Cβ-top, O-top | -90.4 | Cβ-top, O-top | -140.4 | |
CH3CHO | O-top | -8.7 | O-top | -18.3 | |
CH3CO | Cα-top | -81.7 | Cα-top | -116.4 | |
CH2CHO | O-top | -106.7 | O-top | -120.2 | |
CH3COO | Cβ-fcc, O-top | -195.2 | Cβ-fcc, O-top | -238.5 | |
CH3COOH | OOH-top | -7.7 | O-top | -23.1 | |
CH2CO | Cα-top | -5.8 | Cα-top | -8.7 | |
CH2COO | Cβ-top, O-brg | -209.6 | Cβ-top, O-top | -242.3 | |
CHCO | Cβ-brg | -180.8 | Cβ-brg | -235.6 | |
CHCOO | Cβ-fcc, O-top | -245.2 | Cβ-brg, O-top | -310.6 | |
CCO | Cβ-fcc | -318.3 | Cβ-4f | -364.4 | |
CCOO | Cβ-fcc, O-brg | -247.1 | Cβ-brg, O-top | -292.3 | |
OCCO | Cα-top, Cβ-top | -225.4 | — | — | |
CO2 | C-top | -1.9 | C-top | -2.9 |
Table 1 Preferred adsorption configurations and corresponding binding energies of reactants and surface intermediate species on Ag(111) and Ag(211)
吸附物种 | Ag(111) | Ag(211) | |||
---|---|---|---|---|---|
吸附位 | 结合能/(kJ/mol) | 吸附位 | 结合能/(kJ/mol) | ||
CH3CH2OH | O-top | -14.4 | O-top | -18.3 | |
O2 | O-brg | 1.9 | O-4f | -49.0 | |
O | fcc | -339.4 | O-4f | -379.8 | |
H | fcc | -197.1 | fcc | -219.2 | |
OH | O-fcc | -240.4 | fcc | -271.2 | |
H2O | O-top | -8.7 | O-top | -17.3 | |
CH3CH2O | O-top | -101.9 | O-top | -150.0 | |
CH3CHOH | Cα-top | -41.4 | Cα-top | -76.9 | |
CH2CH2OH | Cβ-top, O-top | -90.4 | Cβ-top, O-top | -140.4 | |
CH3CHO | O-top | -8.7 | O-top | -18.3 | |
CH3CO | Cα-top | -81.7 | Cα-top | -116.4 | |
CH2CHO | O-top | -106.7 | O-top | -120.2 | |
CH3COO | Cβ-fcc, O-top | -195.2 | Cβ-fcc, O-top | -238.5 | |
CH3COOH | OOH-top | -7.7 | O-top | -23.1 | |
CH2CO | Cα-top | -5.8 | Cα-top | -8.7 | |
CH2COO | Cβ-top, O-brg | -209.6 | Cβ-top, O-top | -242.3 | |
CHCO | Cβ-brg | -180.8 | Cβ-brg | -235.6 | |
CHCOO | Cβ-fcc, O-top | -245.2 | Cβ-brg, O-top | -310.6 | |
CCO | Cβ-fcc | -318.3 | Cβ-4f | -364.4 | |
CCOO | Cβ-fcc, O-brg | -247.1 | Cβ-brg, O-top | -292.3 | |
OCCO | Cα-top, Cβ-top | -225.4 | — | — | |
CO2 | C-top | -1.9 | C-top | -2.9 |
反应路径 | O—H断裂 | α-C—H断裂 | β-C—H断裂 | |||
---|---|---|---|---|---|---|
E r/ (kJ/mol) | E a/ (kJ/mol) | E r/ (kJ/mol) | E a/ (kJ/mol) | E r/ (kJ/mol) | E a/ (kJ/mol) | |
Ag(111) | ||||||
直接脱氢 | 160.2 | 226.7 | 192.0 | >192.0 | 193.9 | >193.9 |
O辅助脱氢 | -13.5 | 7.7 | -1.9 | 74.3 | 16.4 | 33.8 |
OH辅助脱氢 | 34.7 | 64.6 | 100.3 | >100.3 | 83.0 | >83.0 |
Ag(211) | ||||||
直接脱氢 | 84.9 | >84.9 | 138.0 | >138.0 | 151.5 | >151.5 |
O辅助脱氢 | -32.8 | 2.9 | 2.9 | 51.5 | 3.8 | 86.8 |
OH辅助脱氢 | 22.2 | 31.8 | 46.3 | 166.9 | 54.0 | 98.4 |
Table 2 Reaction energies (E r) and activation barriers (E a) of the first dehydrogenation reaction in different dehydrogenation paths on Ag(111) and Ag(211) surfaces
反应路径 | O—H断裂 | α-C—H断裂 | β-C—H断裂 | |||
---|---|---|---|---|---|---|
E r/ (kJ/mol) | E a/ (kJ/mol) | E r/ (kJ/mol) | E a/ (kJ/mol) | E r/ (kJ/mol) | E a/ (kJ/mol) | |
Ag(111) | ||||||
直接脱氢 | 160.2 | 226.7 | 192.0 | >192.0 | 193.9 | >193.9 |
O辅助脱氢 | -13.5 | 7.7 | -1.9 | 74.3 | 16.4 | 33.8 |
OH辅助脱氢 | 34.7 | 64.6 | 100.3 | >100.3 | 83.0 | >83.0 |
Ag(211) | ||||||
直接脱氢 | 84.9 | >84.9 | 138.0 | >138.0 | 151.5 | >151.5 |
O辅助脱氢 | -32.8 | 2.9 | 2.9 | 51.5 | 3.8 | 86.8 |
OH辅助脱氢 | 22.2 | 31.8 | 46.3 | 166.9 | 54.0 | 98.4 |
编号 | 基元反应 | E a/ (kJ/mol) | E r/ (kJ/mol) |
---|---|---|---|
1 | O2* | 108.1 | -35.7 |
2 | CH3CH2OH*+O* | 7.7 | -13.5 |
CH3CH2OH*+OH* | 64.6 | 34.7 | |
CH3CH2OH*+* | — | 154.3 | |
3 | CH3CH2OH*+O* | 33.8 | 16.4 |
CH3CH2OH*+OH* | — | 83.0 | |
CH3CH2OH*+* | — | 193.9 | |
4 | CH3CH2OH*+O* | 74.3 | -1.9 |
CH3CH2OH*+OH* | — | 100.3 | |
CH3CH2OH*+* | — | 192.0 | |
5 | CH3CH2O*+O* | 38.6 | -212.3 |
CH3CH2O*+OH* | 62.7 | -73.3 | |
CH3CH2O*+* | 46.3 | 2.9 | |
6 | CH3CH2O*+O* | 95.5 | -5.8 |
CH3CH2O*+OH* | — | 62.7 | |
CH3CH2O*+* | — | 139.9 | |
7 | CH3CHO*+O* | 67.5 | -41.5 |
CH3CHO*+* | — | 120.6 | |
CH3CHO*+OH* | 102.3 | 29.9 | |
8 | CH3CHO*+O* | 49.2 | -21.2 |
CH3CHO*+OH* | 31.8 | 11.6 | |
CH3CHO*+* | — | 128.3 | |
9 | CH2CHO*+O* | 29.9 | -33.8 |
CH2CHO*+OH* | 59.8 | -26.1 | |
CH2CHO*+* | — | 63.7 | |
10 | CH2CHO*+O* | 61.8 | 19.3 |
CH2CHO*+OH* | 54.0 | 47.3 | |
CH2CHO*+* | — | 165.0 | |
11 | CH2CO*+O* | 33.8 | -26.1 |
CH2CO*+OH* | 101.3 | -17.4 | |
CH2CO*+O* | 6.8 | -115.8 | |
12 | CHCO*+O* | 21.2 | -30.9 |
CHCO*+OH* | 16.4 | -28.0 | |
CHCO*+O* | 15.4 | -93.6 | |
13 | CCO*+O* | 21.2 | -100.3 |
14 | CH3CO*+* | 173.7 | 106.1 |
CH2CO*+* | — | 228.7 | |
CHCO*+* | — | 225.8 | |
15 | CH2COO*+* | 155.3 | 38.6 |
CHCOO*+* | 137.0 | 9.7 | |
CCOO*+* | 126.4 | -13.5 | |
16 | CCO*+O* | 53.1 | -83.5 |
Table 3 Activation barriers and reaction energies for elementary reaction steps on Ag(111)
编号 | 基元反应 | E a/ (kJ/mol) | E r/ (kJ/mol) |
---|---|---|---|
1 | O2* | 108.1 | -35.7 |
2 | CH3CH2OH*+O* | 7.7 | -13.5 |
CH3CH2OH*+OH* | 64.6 | 34.7 | |
CH3CH2OH*+* | — | 154.3 | |
3 | CH3CH2OH*+O* | 33.8 | 16.4 |
CH3CH2OH*+OH* | — | 83.0 | |
CH3CH2OH*+* | — | 193.9 | |
4 | CH3CH2OH*+O* | 74.3 | -1.9 |
CH3CH2OH*+OH* | — | 100.3 | |
CH3CH2OH*+* | — | 192.0 | |
5 | CH3CH2O*+O* | 38.6 | -212.3 |
CH3CH2O*+OH* | 62.7 | -73.3 | |
CH3CH2O*+* | 46.3 | 2.9 | |
6 | CH3CH2O*+O* | 95.5 | -5.8 |
CH3CH2O*+OH* | — | 62.7 | |
CH3CH2O*+* | — | 139.9 | |
7 | CH3CHO*+O* | 67.5 | -41.5 |
CH3CHO*+* | — | 120.6 | |
CH3CHO*+OH* | 102.3 | 29.9 | |
8 | CH3CHO*+O* | 49.2 | -21.2 |
CH3CHO*+OH* | 31.8 | 11.6 | |
CH3CHO*+* | — | 128.3 | |
9 | CH2CHO*+O* | 29.9 | -33.8 |
CH2CHO*+OH* | 59.8 | -26.1 | |
CH2CHO*+* | — | 63.7 | |
10 | CH2CHO*+O* | 61.8 | 19.3 |
CH2CHO*+OH* | 54.0 | 47.3 | |
CH2CHO*+* | — | 165.0 | |
11 | CH2CO*+O* | 33.8 | -26.1 |
CH2CO*+OH* | 101.3 | -17.4 | |
CH2CO*+O* | 6.8 | -115.8 | |
12 | CHCO*+O* | 21.2 | -30.9 |
CHCO*+OH* | 16.4 | -28.0 | |
CHCO*+O* | 15.4 | -93.6 | |
13 | CCO*+O* | 21.2 | -100.3 |
14 | CH3CO*+* | 173.7 | 106.1 |
CH2CO*+* | — | 228.7 | |
CHCO*+* | — | 225.8 | |
15 | CH2COO*+* | 155.3 | 38.6 |
CHCOO*+* | 137.0 | 9.7 | |
CCOO*+* | 126.4 | -13.5 | |
16 | CCO*+O* | 53.1 | -83.5 |
编号 | 基元反应 | E a/ (kJ/mol) | E r/ (kJ/mol) |
---|---|---|---|
1 | O2* | 60.8 | -65.2 |
2 | CH3CH2OH*+O* | 2.9 | -32.8 |
CH3CH2OH*+OH* | 31.8 | 22.2 | |
CH3CH2OH*+* | — | 84.9 | |
3 | CH3CH2OH*+O* | 86.8 | 3.8 |
CH3CH2OH*+OH* | 98.4 | 54.0 | |
CH3CH2OH*+* | — | 151.5 | |
4 | CH3CH2OH*+O* | 51.1 | 2.9 |
CH3CH2OH*+OH* | 166.9 | 46.3 | |
CH3CH2OH*+* | — | 138.0 | |
5 | CH3CH2O*+O* | 19.3 | -175.6 |
CH3CH2O*+OH* | 42.4 | -64.6 | |
CH3CH2O*+* | 40.5 | -2.9 | |
6 | CH3CH2O*+O* | 98.4 | -24.1 |
CH3CH2O*+OH* | 58.8 | -67.5 | |
CH3CH2O*+* | — | 165.9 | |
7 | CH3CHO*+O* | 56.0 | -43.4 |
CH3CHO*+* | 115.8 | 100.3 | |
CH3CHO*+OH* | 68.5 | 22.2 | |
8 | CH3CHO*+O* | 6.7 | -56.0 |
CH3CHO*+OH* | 7.7 | 7.7 | |
CH3CHO*+* | — | 93.6 | |
9 | CH2CHO*+O* | 42.4 | -76.2 |
CH2CHO*+OH* | 66.6 | -43.4 | |
CH2CHO*+* | 112.9 | 69.5 | |
10 | CH2CHO*+O* | 113.8 | -25.1 |
CH2CHO*+OH* | 81.0 | 30.9 | |
CH2CHO*+* | — | 150.5 | |
11 | CH2CO*+O* | 0 | -97.4 |
CH2CO*+OH* | 15.4 | -17.4 | |
CH2CO*+O* | 0 | -163.0 | |
12 | CHCO*+O* | 36.7 | -50.2 |
CHCO*+OH* | 47.3 | 11.6 | |
CHCO*+O* | 0 | -123.5 | |
13 | CCO*+O* | 110.0 | -16.4 |
14 | CH3CO*+* | 136.0 | 60.8 |
CH2CO*+* | 169.8 | 133.1 | |
CHCO*+* | — | 208.4 | |
15 | CH2COO*+* | 95.5 | 34.3 |
CHCOO*+* | 103.2 | 37.6 | |
CCOO*+* | 85.9 | 17.5 |
Table 4 Activation barriers and reaction energies for elementary reaction steps on Ag(211)
编号 | 基元反应 | E a/ (kJ/mol) | E r/ (kJ/mol) |
---|---|---|---|
1 | O2* | 60.8 | -65.2 |
2 | CH3CH2OH*+O* | 2.9 | -32.8 |
CH3CH2OH*+OH* | 31.8 | 22.2 | |
CH3CH2OH*+* | — | 84.9 | |
3 | CH3CH2OH*+O* | 86.8 | 3.8 |
CH3CH2OH*+OH* | 98.4 | 54.0 | |
CH3CH2OH*+* | — | 151.5 | |
4 | CH3CH2OH*+O* | 51.1 | 2.9 |
CH3CH2OH*+OH* | 166.9 | 46.3 | |
CH3CH2OH*+* | — | 138.0 | |
5 | CH3CH2O*+O* | 19.3 | -175.6 |
CH3CH2O*+OH* | 42.4 | -64.6 | |
CH3CH2O*+* | 40.5 | -2.9 | |
6 | CH3CH2O*+O* | 98.4 | -24.1 |
CH3CH2O*+OH* | 58.8 | -67.5 | |
CH3CH2O*+* | — | 165.9 | |
7 | CH3CHO*+O* | 56.0 | -43.4 |
CH3CHO*+* | 115.8 | 100.3 | |
CH3CHO*+OH* | 68.5 | 22.2 | |
8 | CH3CHO*+O* | 6.7 | -56.0 |
CH3CHO*+OH* | 7.7 | 7.7 | |
CH3CHO*+* | — | 93.6 | |
9 | CH2CHO*+O* | 42.4 | -76.2 |
CH2CHO*+OH* | 66.6 | -43.4 | |
CH2CHO*+* | 112.9 | 69.5 | |
10 | CH2CHO*+O* | 113.8 | -25.1 |
CH2CHO*+OH* | 81.0 | 30.9 | |
CH2CHO*+* | — | 150.5 | |
11 | CH2CO*+O* | 0 | -97.4 |
CH2CO*+OH* | 15.4 | -17.4 | |
CH2CO*+O* | 0 | -163.0 | |
12 | CHCO*+O* | 36.7 | -50.2 |
CHCO*+OH* | 47.3 | 11.6 | |
CHCO*+O* | 0 | -123.5 | |
13 | CCO*+O* | 110.0 | -16.4 |
14 | CH3CO*+* | 136.0 | 60.8 |
CH2CO*+* | 169.8 | 133.1 | |
CHCO*+* | — | 208.4 | |
15 | CH2COO*+* | 95.5 | 34.3 |
CHCOO*+* | 103.2 | 37.6 | |
CCOO*+* | 85.9 | 17.5 |
1 | Nair H , Liszka M J , Gatt J E , et al . Effects of metal oxide domain size, dispersion, and interaction in mixed WO x /MoO x catalysts supported on Al2O3 for the partial oxidation of ethanol to acetaldehyde[J]. J. Phy. Chem. C, 2008, 112(5): 1612-1620. |
2 | Chimentão R J , Herrera E , Kwak J H , et al . Oxidation of ethanol to acetaldehyde over Na-promoted vanadium oxide catalyst[J]. Appl. Catal. A, 2007, 332(2): 263-272. |
3 | Sheldon R A , Arends I , ten Brink G , et al . Green, catalytic oxidations of alcohols[J]. Acc. Chem. Res., 2002, 35(9): 774-781. |
4 | 李振宇, 李顶杰, 黄格省, 等 . 燃料乙醇发展现状及思考[J]. 化工进展, 2013, 32(7): 1457-1467. |
Li Z Y , Li D J , Huang G S , et al . Insights on current development of fuel ethanol[J]. Chem. Ind. & Eng. Pro., 2013, 32(7): 1457-1467. | |
5 | Shi Z Z , Zhang C , Tang C H , et al . Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant[J]. Chem. Soc. Rev., 2012, 41(8): 3381-3430. |
6 | 王洁莹, 陈声培, 孙世刚, 等 . 纳米FePt/GC催化剂的制备及其对乙醇的电氧化性能[J]. 化工学报, 2010, 61(S1): 101-105. |
Wang J Y , Chen S P , Sun S G , et al . Preparation of FePt/GC nanocatalysts and their electrocatalytic activities for ethanol oxidation[J]. CIESC Journal, 2010, 61(S1): 101-105. | |
7 | 王亮, 孟祥举, 肖丰收 . 水滑石负载Au纳米粒子的制备及其催化醇氧化反应[J]. 催化学报, 2010, 31(8): 943-947. |
Wang L , Meng X J , Xiao F S . Au nanoparticles supported on a layered double hydroxide with excellent catalytic properties for the aerobic oxidation of alcohols[J]. Chinese J. Catal., 2010, 31(8): 943-947. | |
8 | Jørgensen B , Christiansen S E , Thomsen M L D , et al . Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate[J]. J. Catal., 2007, 251(2): 332-337. |
9 | Takei T , Iguchi N , Haruta M . Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol[J]. Catal. Surv. Asia, 2011, 15(2): 80-88. |
10 | Christensen C H , Jørgensen B , Andersen H , et al . Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst[J]. Angew. Chem. Int. Ed., 2006, 45(28): 4648-4651. |
11 | Gong J L , Mullins C B . Selective oxidation of ethanol to acetaldehyde on gold[J]. J. Am. Chem. Soc., 2008, 130(49): 16458-16459. |
12 | de Lima S , Davis B H , Noronha F B . Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst[J]. J. Catal., 2008, 257(2): 356-368. |
13 | Ali A H , Zaera F . Kinetic study on the selective catalytic oxidation of 2-propanol to acetone over nickel foils[J]. J. Mol. Catal. A, 2002, 177(2): 215-235. |
14 | Faith W L , Keyes D B , Clark R L . Industrial Chemicals[M]. 2nd ed.New York: John Wiley & Sons, Inc., 1957: 325. |
15 | Xu J , Xu X C , Yang X J , et al . Silver/hydroxyapatite foam as a highly selective catalyst for acetaldehyde production via ethanol oxidation[J]. Catal. Today, 2016, 276(1): 19-27. |
16 | Yang Z , Li J , Yang X , et al . Gas-phase oxidation of alcohols over silver: the extension of catalytic cycles of oxidation of alcohols in liquid-phase[J]. J. Mol. Catal. A, 2005, 241(1/2): 15-22. |
17 | Chen J , Tang X , Liu J , et al . Synthesis and characterization of Ag-hollandite nanofibers and its catalytic application in ethanol oxidation[J]. Chem. Mater., 2007, 19(17): 4292-4299. |
18 | Wachs I E , Madix R J . The oxidation of methanol on a silver (110) catalyst[J]. Surf. Sci., 1978, 76(2): 531-558. |
19 | Wachs I E , Madix R J . The oxidation of ethanol on Cu(110) and Ag(110) catalysts[J]. Appl. Surf. Sci., 1978, 1(3): 303-328. |
20 | Sim W S , Gardner P , King D A . Structure and reactivity of the surface methoxy species on Ag(111)[J]. J. Phys. Chem., 1995, 99(43): 16002-16010. |
21 | Perdew J P , Pederson M R , Singh D J , et al . Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46(11): 6671-6683. |
22 | Blöchl B E . Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979. |
23 | Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775. |
24 | Li J , Zhuang Y , Lin W . Measurement of Ag lattice parameters by magnetic and electronic techniques[J]. J. Alloy. Compd., 1993, 191(3): 187-193. |
25 | Sheppard D , Xiao P , Chemelewski W , et al . A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136(7): 103-115. |
26 | Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000, 113(22): 9901-9923. |
27 | Alcalá R , Mavrikakis M , Dumesic J A . DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111)[J]. J. Catal., 2003, 218(1): 178-190. |
28 | Wang H F , Liu Z P . Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network[J]. J. Am. Chem. Soc., 2008, 139(33): 10996-11004. |
29 | Ferrin P , Simonetti D , Nørskov J K , et al . Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations[J]. J.Am. Chem. Soc., 2009, 131(16): 5809-5815. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[7] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[8] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[14] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||