CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1772-1780.DOI: 10.11949/0438-1157.20221524
• Energy and environmental engineering • Previous Articles Next Articles
Tianhao BAI1,2(), Xiaowen WANG1,2, Mengzi YANG1,2, Xinwei DUAN1,2, Jie MI1,2, Mengmeng WU1,2(
)
Received:
2022-11-23
Revised:
2023-03-08
Online:
2023-06-02
Published:
2023-04-05
Contact:
Mengmeng WU
白天昊1,2(), 王晓雯1,2, 杨梦滋1,2, 段新伟1,2, 米杰1,2, 武蒙蒙1,2(
)
通讯作者:
武蒙蒙
作者简介:
白天昊(1997—),男,硕士研究生,1521725917@qq.com
基金资助:
CLC Number:
Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite[J]. CIESC Journal, 2023, 74(4): 1772-1780.
白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780.
Fig.2 Breakthrough curve of ZnAl-HTO under simulated gas atmosphere and simple atmosphere (a), and sulfur capacity and COS release amount under simulated gas atmosphere (b)
反应编号 | 反应方程式 | ΔH/ (kJ/mol) | KӨ | X/% |
---|---|---|---|---|
1 | H2S+CO | -2.6 | 3.3×10-2 | 79 |
2 | H2S+CO2 | 34.6 | 6.6×10-3 | 33 |
3 | H2S | 34.1 | 8.6×10-4 | 0.008 |
4 | S+CO | -36.7 | 38.4 | 99.6 |
5 | 2S+2CO2 | 222.8 | 4.5×10-8 | 69.2 |
6 | ZnS+CO | 181.1 | 1.0×10-11 | 7.2×10-7 |
7 | ZnS+CO2 | 108.0 | 7.3×10-8 | 7.2×10-5 |
Table 1 Possible COS formation pathways and corresponding thermodynamic parameters
反应编号 | 反应方程式 | ΔH/ (kJ/mol) | KӨ | X/% |
---|---|---|---|---|
1 | H2S+CO | -2.6 | 3.3×10-2 | 79 |
2 | H2S+CO2 | 34.6 | 6.6×10-3 | 33 |
3 | H2S | 34.1 | 8.6×10-4 | 0.008 |
4 | S+CO | -36.7 | 38.4 | 99.6 |
5 | 2S+2CO2 | 222.8 | 4.5×10-8 | 69.2 |
6 | ZnS+CO | 181.1 | 1.0×10-11 | 7.2×10-7 |
7 | ZnS+CO2 | 108.0 | 7.3×10-8 | 7.2×10-5 |
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
ZnAl-HTO | 31 | 0.09 |
Zn30Ni1Al-HTO | 37 | 0.22 |
Zn20Ni1Al-HTO | 41 | 0.20 |
Zn10Ni1Al-HTO | 43 | 0.27 |
Table 2 Structural parameters of desulfurizer holes before and after nickel doping
样品 | 比表面积/(m2/g) | 孔容/(cm3/g) |
---|---|---|
ZnAl-HTO | 31 | 0.09 |
Zn30Ni1Al-HTO | 37 | 0.22 |
Zn20Ni1Al-HTO | 41 | 0.20 |
Zn10Ni1Al-HTO | 43 | 0.27 |
Fig.7 The outlet H2S / COS curve (a) corresponding to ZnNiAl-HTO and the corresponding saturated sulfur capacity and COS release amount (b) during sulfur absorption saturation
1 | 刘臻, 次东辉, 方薪晖, 等. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J]. 洁净煤技术, 2022, 28(2):130-136. |
Liu Z, Ci D H, Fang X H, et al. Concept of carbon cycle based on co-gasification of carbon containing waste and coal and analysis of carbon emission reduction potential[J].Clean Coal Technology, 2022, 28(2):130-136. | |
2 | Faraji F, Safarik I, Strausz O P, et al. CO-catalyzed conversion of H2S to H2 + S(1): Reaction between CO and H2S[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3854-3860. |
3 | 陈阳, 杨芊. “双碳”背景下现代煤化工高质量发展研究[J]. 煤炭加工与综合利用, 2022(1):50-54. |
Chen Y, Yang Q. Research on high-quality development of modern coal chemical industry under background of “double-carbon”[J].Coal Processing & Comprehensive Utilization, 2022(1):50-54. | |
4 | Feng Y, Lu J J, Wang J C, et al. Desulfurization sorbents for green and clean coal utilization and downstream toxics reduction: a review and perspectives[J]. Journal of Cleaner Production, 2020, 273: 123080. |
5 | Liu D J, Wang Q, Wu J, et al. A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas[J]. Environmental Chemistry Letters, 2019, 17(1): 259-276. |
6 | Wakker J P, Gerritsen A W, Moulijn J A. High temperature hydrogen sulfide and carbonyl sulfide removal with manganese oxide (MnO) and iron oxide (FeO) on γ-alumina acceptors[J]. Industrial & Engineering Chemistry Research, 1993, 32(1): 139-149. |
7 | Sasaoka E, Taniguchi K, Hirano S, et al. Catalytic activity of ZnS formed from desulfurization sorbent ZnO for conversion of COS to H2S[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1102-1106. |
8 | Sasaoka E, Taniguchi K, Uddin M A, et al. Characterization of reaction between ZnO and COS[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2389-2394. |
9 | Park N K, Lee J D, Lee T J, et al. The preparation of a high surface area metal oxide prepared by a matrix-assisted method for hot gas desulphurization[J]. Fuel, 2005, 84(17): 2165-2171. |
10 | 上官炬, 常丽萍, 苗茂谦. 气体净化分离技术[M]. 北京: 化学工业出版社, 2012. |
Shangguan J, Chang L P, Miao M Q. Gas Purification and Separation Technology[M]. Beijing: Chemical Industry Press, 2012. | |
11 | Li L Y, King D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today, 2006, 116(4):537-541. |
12 | Oakey J E, Simms N J, Peng W W. The development of hot gas desulphurization systems for gasification combined cycle power generation[R]. Didcot, 2000. |
13 | Yu J L, Chang L P, Xie W, et al. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization[J]. Korean Journal of Chemical Engineering, 2011, 28(4): 1054-1057. |
14 | Li F, Zhang Z, Ren X, et al. A preliminary study on the formation and removal of COS during hot coal gas desulfurization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 33(4): 327-334. |
15 | Yang H Y, Sothen R, Cahela D R, et al. Breakthrough characteristics of reformate desulfurization using ZnO sorbents for logistic fuel cell power systems[J]. Industrial & Engineering Chemistry Research, 2008, 47(24): 10064-10070. |
16 | Fukuda K, Dokiya M, Kameyama T, et al. Catalytic activity of metal sulfides for the reaction, H2S+CO=H2+COS[J]. Journal of Catalysis, 1977, 49(3): 379-382. |
17 | Zhang F L, Wei Z, Jiang G X, et al. Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts[J]. Applied Catalysis B: Environmental, 2022, 319: 121912. |
18 | Fellmuth P, Lutz W, Bülow M. Influence of weakly coordinated cations and basic sites upon the reaction of H2S and CO2 on zeolites[J]. Zeolites, 1987, 7(4): 367-371. |
19 | 畅炳蔚. 类水滑石基锌铝氧化物的制备及其脱硫性能的研究[D]. 太原:太原理工大学, 2018. |
Chang B W. Preparation and desulfurization performance of ZnAl LDO based on hydrotalcitr-like compounds[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
20 | 郭恩惠. 类水滑石衍生锌基复合氧化物可控合成及其煤气脱硫性能研究[D]. 太原:太原理工大学, 2020. |
Guo E H. Controllable synthesis and desulfurization performance of hydrotalcite-like derived Zn-based composite oxide[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
21 | Wu M M, Guo E H, Li Q C, et al. Mesoporous Zn-Fe-based binary metal oxide sorbent with sheet-shaped morphology: synthesis and application for highly efficient desulfurization of hot coal gas[J]. Chemical Engineering Journal, 2020, 389: 123750. |
22 | Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of COS over calcined CoNiAl hydrotalcite-like compounds modified by cerium[J]. Applied Clay Science, 2012, 70: 8-13. |
23 | Zhao S Z, Yi H H, Tang X L, et al. Mechanism of activity enhancement of the Ni based hydrotalcite-derived materials in carbonyl sulfide removal[J]. Materials Chemistry and Physics, 2018, 205: 35-43. |
24 | Zhao S Z, Yi H H, Tang X L, et al. Calcined ZnNiAl hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal[J]. Catalysis Today, 2019, 327: 161-167. |
25 | Kaloidas V, Papayannakos N. Kinetics of thermal, non-catalytic decomposition of hydrogen sulphide[J]. Chemical Engineering Science, 1989, 44(11): 2493-2500. |
26 | 冯续. 氧化锌脱硫剂研究动向[J]. 化学工业与工程技术, 2008, 29(2): 31-35. |
Feng X. Resarch trend of zinc oxide desulphurizing agents[J]. Journal of Chemical Industry & Engineering, 2008, 29(2): 31-35. | |
27 | 上官炬, 郭汉贤. 氧化铝基COS、CS2水解催化剂表面碱性和催化作用[J]. 分子催化,1997, 11(5): 337-342. |
Shangguan J, Guo H X. The surface basicity and catalysis over the alumina based catalysts for COS and CS2 hydrolysis[J]. Journal of Molecular Catalysis, 1997, 11(5): 337-342. | |
28 | 王泽鑫. 改性氧化锌基脱硫剂制备及脱硫性能的研究[D]. 太原: 太原理工大学, 2018. |
Wang Z X. Study on the preparation of modified zinc oxide based sorbent and its performance of removing sulfide[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
29 | Li Q C, Wang X W, Zhang R, et al. Insights into the effects of metal-ion doping on the structure and hot-coal-gas desulfurization properties of Zn-based sorbents supported on SBA-15[J]. Fuel, 2022, 315: 123198. |
30 | Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703. |
31 | 赵芸. 层状双金属氢氧化物及氧化物的可控制备和应用研究[D]. 北京: 北京化工大学, 2002. |
Zhao Y. Preparation of LDH and LDO in a controllable fashion for specific applications[D]. Beijing: Beijing University of Chemical Technology, 2002. | |
32 | Liu Q, Zhang Z F, Liu B S, et al. Rare earth oxide doping and synthesis of spinel ZnMn2O4/KIT-1 with double gyroidal mesopores for desulfurization nature of hot coal gas[J]. Applied Catalysis B: Environmental, 2018, 237: 855-865. |
33 | Wu M M, Li Q C, Wang X W, et al. Structure characteristics and hot-coal-gas desulfurization properties of Zn-based sorbents supported on mesoporous silica with different pore-arrangement patterns: a comparison study[J]. Energy & Fuels, 2021, 35(3): 2456-2467. |
34 | Wang X W, Zhang R, Li Q C, et al. Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas[J]. Fuel, 2023, 332: 126052. |
35 | Zhang X Y, Wei L, Guo X. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: enhanced capacitive storage and cycling performance for supercapacitors[J]. Chemical Engineering Journal, 2018, 353: 615-625. |
36 | Zheng J H, Zhang R M, Wang X G, et al. Hydrothermally synthesized Ni(OH)2@Zn(OH)2 composite with enhanced electrochemical performance for supercapacitors[J]. Research on Chemical Intermediates, 2018, 44(11): 6637-6648. |
37 | Sun P X, Wang C G, He W D, et al. One-step synthesis of 3D network-like Ni x Co1– x MoO4 porous nanosheets for high performance battery-type hybrid supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10139-10147. |
38 | Mendoza-Damián G, Tzompantzi F, Mantilla A, et al. Improved photocatalytic activity of SnO2-ZnAl LDH prepared by one step Sn4+ incorporation[J]. Applied Clay Science, 2016, 121/122: 127-136. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[6] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[7] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[8] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[9] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Xun JIAO, Cheng TONG, Cunpu LI, Zidong WEI. Kinetic regulation strategies in lithium-sulfur batteries [J]. CIESC Journal, 2023, 74(1): 170-191. |
[12] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[13] | Yu CHEN, Xiaoyan ZHENG, Hui ZHAO, Erqiang WANG, Jie LI, Chunshan LI. Heterogeneous aldol condensation catalyzed with Pickering emulsion [J]. CIESC Journal, 2023, 74(1): 449-458. |
[14] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[15] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||